Skip to main content
Log in

Estimating the Number of Stable Configurations for the Generalized Thomson Problem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Given a natural number \(N\), one may ask what configuration of \(N\) points on the two-sphere minimizes the discrete generalized Coulomb energy. If one applies a gradient-based numerical optimization to this problem, one encounters many configurations that are stable but not globally minimal. This led the authors of this manuscript to the question, how many stable configurations are there? In this manuscript we report methods for identifying and counting observed stable configurations, and estimating the actual number of stable configurations. These estimates indicate that for \(N\) approaching two hundred, there are at least tens of thousands of stable configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barber, C., Dobkin, D., Huhdanpaa, H.: The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Borodachov, S., Hardin, D., Saff, E.: Asymptotics for discrete weighted minimal energy problems on rectifiable sets. Trans. Am. Math. Soc. 360(3), 1559–1580 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Calef, M., Griffiths, W., Schulz, A., Fichtl, C., Hardin, D.: Observed asymptotic differences in energies of stable and minimal point configurations on \(\mathbb{S}^2\) and the role of defects. J. Math. Phys. 54(10), 101901 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  4. Demmel, J., Hida, Y.: Accurate and efficient floating point summation. SIAM J. Sci. Comput. 25(4), 1214–1248 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Efron, B., Thisted, R.: Estimating number of unseen species—how many words did Shakespeare know? Biometrika 63(3), 435–447 (1976)

    MATH  MathSciNet  Google Scholar 

  6. Erber, T., Hockney, G.: Equilibrium-configurations of \(n\) equal charges on a sphere. J. Phys. A 24(23), L1369–L1377 (1991)

    Article  ADS  Google Scholar 

  7. Erber, T., Hockney, G.M.: Comment on “method of constrained global optimization”. Phys. Rev. Lett. 74(8), 1482 (1995)

    Article  ADS  Google Scholar 

  8. Erber, T., Hockney, G.: Complex systems: equilibrium configurations of \(n\) equal charges on a sphere (\(2\le n \le 112\)). Adv. Chem. Phys. 98, 495–594 (1997)

    MathSciNet  Google Scholar 

  9. Gale, W., Sampson, G.: Good–Turing frequency estimation without tears. J. Quant. Linguist. 2(3), 217–237 (1995)

    Article  Google Scholar 

  10. Good, I.: The population frequencies of species and the estimation of population parameters. Biometrika 40(3–4), 237–264 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hardin, D., Saff, E.: Minimal riesz energy point configurations for rectifiable \(d\)-dimensional manifolds. Adv. Math. 193, 174–204 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Higham, N.: The accuracy of floating-point summation. SIAM J. Sci. Comput. 14(4), 783–799 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoare, M.R., McInnes, J.: Statistical-mechanics and morphology of very small atomic clusters. Faraday Discuss. 61, 12–24 (1976)

    Article  Google Scholar 

  14. Kuijlaars, A., Saff, E.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538. MR 1458327 (98e:11092) (1998)

  15. Lakhbab, H., El Bernoussi, S.: A new hybrid approach for tackling Thomson problem. In: Aboutajdine, D., Skalli, A., Benchekroun, B., Artiba, A. (eds.) Proceedings of the 2013 International Conference on Industrial Engineering and Systems Management (IESM) (2013)

  16. Landkof, N.: Foundations of Modern Potential Theory. Springer, New York (1973)

    Google Scholar 

  17. Lins, S.: A sequence representation for maps. Discrete Math. 30(3), 249–263. MR MR573640 (81h:68057) (1980)

  18. Melnyk, T., Knop, O., Smith, W.: Extremal arrangements of points and unit charges on a sphere—equilibrium configurations revisited. Can. J. Chem. 55(10), 1745–1761 (1977)

    Article  MathSciNet  Google Scholar 

  19. Morris, J., Deaven, D., Ho, K.: Genetic-algorithm energy minimization for point charges on a sphere. Phys. Rev. B 53(4), R1740–R1743 (1996)

    Article  ADS  Google Scholar 

  20. Pólya, G., Szegö, G.: The transfinite diameter (capacity constants) of even and spatial point sets. Journal Fur Die Reine Und Angewandte Mathematik 165, 4–49 (1931) (in German)

  21. Smale, S.: Mathematical problems for the next century, Gac. R. Soc. Mat. Esp. 3(3), 413–434 (2000), Translated from Math. Intelligencer 20(2), 7–15 (1998) [MR1631413 (99h:01033)] by M. J. Alcón. MR MR1819266

  22. Stillinger, F.H., Weber, T.A.: Hidden structure in liquids. Phys. Rev. A 25(2), 978–989 (1982)

    Article  ADS  Google Scholar 

  23. Thomson, J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle: with application of the results to the theory of atomic structure. Philos. Mag. Ser. 7(39), 237–265 (1904)

    Article  MATH  Google Scholar 

  24. Wales, D., Ulker, S.: Structure and dynamics of spherical crystals characterized for the Thomson problem. Phys. Rev. B 74(21), 212101 (2006)

    Article  ADS  Google Scholar 

  25. Wales, D., McKay, H., Altschuler, E.: Defect motifs for spherical topologies. Phys. Rev. B 79(22), 224115 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mark Ellingham for his clear explanation of Algorithm 2. The authors are also grateful to the referees for their suggested changes to the manuscript. The work of Matthew Calef was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. LA-UR-14-27638 The work of Alexia Schulz is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Calef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calef, M., Griffiths, W. & Schulz, A. Estimating the Number of Stable Configurations for the Generalized Thomson Problem. J Stat Phys 160, 239–253 (2015). https://doi.org/10.1007/s10955-015-1245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1245-6

Keywords

Navigation