Skip to main content
Log in

Short Hyperuniform Random Walks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Random walks of two steps, with fixed sums of lengths of \(1\), taken into uniformly random directions in d-dimensional Euclidean spaces (\(d\ge 2\)) are investigated to construct continuous step-length distributions which make them hyperuniform. The endpoint positions of hyperuniform walks are spread out in the unit ball as the projections in the walk space of points uniformly distributed on the surface of the unit hypersphere of some k-dimensional Euclidean space (\(k>d\)). Unique symmetric continuous step-length distributions exist for given d and k, provided that \(d<k<2d\). The walk becomes uniform on the unit ball when \(k=d+2\). The symmetric densities reduce to simple polynomials for uniform random walks and are mixtures of two pairs of asymmetric beta distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, No. 55, (1964)

  2. Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London (1986)

    Book  MATH  Google Scholar 

  3. Balakrishnan, N., Stepanov, A.: On the use of bivariate Mellin transform in bivariate random scaling and some applications. Methodol. Comput. Appl. Probab. 16(1), 235–244 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R Soc. Interface 5, 813–834 (2008)

    Article  Google Scholar 

  6. Dereziński, J.: Hypergeometric type functions and their symmetries. Ann. Henri Poincaré 15, 1569–1653 (2014)

    Article  MATH  ADS  Google Scholar 

  7. De Gregorio, A.: A family of random walks with generalized Dirichlet steps. J. Math. Phys. 55(2), 02330 (2014)

    Article  Google Scholar 

  8. De Gregorio, A., Orsingher, E.: Flying randomly in \(\mathbb{R}^d\) with Dirichlet displacements. Stochastic Process. Appl. 122(2), 676–713 (2011)

    Article  Google Scholar 

  9. Driver, K., Möller, M.: Quadratic and cubic transformations and zeros of hypergeometric polynomials. J. Comput. Appl. Math. 142, 411–417 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Dutka, J.: On the problem of random flights. Arch. Hist. Exact Sci. 32(3–4), 351–375 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fang, K.T., Kotz, S., Ng, K.W.: Symmetric Multivariate and Related Distributions. Monographs on Statistics and Applied Probability, vol. 36, Chapman and Hall Ltd., London (1990)

  12. Franceschetti, M.: When a random walk of fixed length can lead uniformly anywhere inside a hypersphere. J. Stat. Phys. 127(4), 813–823 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. García-Pelayo, R.: The random flight and the persistent random walk. In: Skogseid, A., Fasano, V. (eds.) Statistical Mechanics and Random Walks: Principles, Processes and Applications. Nova Science Publishers, New York (2011)

    Google Scholar 

  14. García-Pelayo, R.: Exact solutions for isotropic random flights in odd dimensions. J. Math. Phys. 53(10), 103504 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  15. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  16. Hansen, M., Frejsel, A.M., Kim, J., Naselsky, P., Nesti, F.: Pearson’s random walk in the space of the CMB phases: evidence for parity asymmetry. Phys. Rev. D 83, 103509 (2011)

    Article  ADS  Google Scholar 

  17. Hashorva, E., Pakes, A.G.: Tail asymptotics under beta random scaling. J. Math. Anal. Appl. 372, 496–514 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kolesnik, A.D.: Probability law for the euclidean distance between two planar random flights. J. Stat. Phys. 154(4), 1124–1152 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Kolesnik, A.D.: Random motions at finite speed in higher dimensions. J. Stat. Phys. 131(6), 1039–1065 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Kolesnik, A.D.: The explicit probability distribution of a six-dimensional random flight. Theory Stoch. Process. 15(1), 33–39 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Le Caër, G.: A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths. J. Stat. Phys. 140(4), 728–751 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Le Caër, G.: A new family of solvable Pearson–Dirichlet random walks. J. Stat. Phys. 144(1), 23–45 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Le Caër, G.: Two-step Dirichlet random walks. Physica A 430, 201–215 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  24. Letac, G., Piccioni, M.: Dirichlet random walks. J. Appl. Probab. 51, 1081–1099 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)

    Article  MathSciNet  Google Scholar 

  26. Lord, R.: The distribution of distance in a hypersphere. Ann. Math. Stat. 25(4), 794–798 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mathai, A.M.: A Handbook of Generalized Special Functions for Statistical and Physical Sciences. Oxford Science Publications, Oxford (1993)

    MATH  Google Scholar 

  28. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  29. Orsingher, E., de Gregorio, A.: Random flights in higher spaces. J. Theor. Probab. 20(4), 769–806 (2007)

    Article  MATH  Google Scholar 

  30. Pearson, K.: The problem of the random walk. Nature 72, 294 (1905)

    Article  ADS  Google Scholar 

  31. Pearson, K.: The problem of the random walk. Nature 72, 342 (1905)

    Article  ADS  Google Scholar 

  32. Pearson, K.: A Mathematical Theory of Random Migration. Mathematical Contributions to the Theory of Evolution XV. Draper’s Company Research Memoirs, Biometric Series. Dulau and co., London (1906)

  33. Pogorui, A., Rodríguez-Dagnino, R.M.: Random motion with uniformly distributed directions and random velocity. J. Stat. Phys. 147(6), 12161225 (2012)

    Article  Google Scholar 

  34. Pogorui, A., Rodríguez-Dagnino, R.M.: Random motion with gamma steps in higher dimensions. Stat. Probab. Lett. 83(7), 1638–1643 (2013)

    Article  MATH  Google Scholar 

  35. Stadje, W.: The exact probability distribution of a two-dimensional random walk. J. Stat. Phys. 46(1–2), 207–216 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  36. Stannard, A., Coles, P.: Random-walk statistic and the spherical harmonic representation of CMB Maps. Mon. Not. R. Astron. Soc. 364, 929–933 (2005)

    Article  ADS  Google Scholar 

  37. Viswanathan, G.M., da Luz, M.G.E., Raposo, E.P., Stanley, H.E.: The Physics of Foraging. An Introduction to Random Searches and Biological Encounters. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  38. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  39. Zoia, A., Dumonteil, E., Mazzolo, A.: Collision densities and mean residence times for d-dimensional exponential flights. Phys. Rev. E 83(4), 041137 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Casini.

Appendices

Appendix 1: Multivariate Dirichlet Distribution from Gamma Distributions

The probability density function \(p_X(x)\) of a gamma random variable \(X\) , is [11]

$$\begin{aligned} p_X(x)=\frac{x^{\alpha -1}\exp \left( -x/\theta \right) }{\theta ^\alpha \Gamma (\alpha )} (x>0) \end{aligned}$$
(6.1)

We denote it here as \(X\sim \gamma (\alpha , \theta )\) where \(\alpha >0\) is the shape parameter and \(\theta > 0\) the scale parameter while \(\Gamma (\alpha )\) is the Euler gamma function. The characteristic function of \(X\) is \(\phi _X(t)=E(e^{itX})=\frac{1}{(1-i\theta t)^\alpha }\) [11].

A sum \(G=\sum _{i=1}^n G_i\) of \(n\) independent gamma random variables, \(G_i \sim \gamma (q_i ,\theta )\) \((i=1, \ldots , n)\), with identical scale parameter \(\theta \) and a priori different shape parameters \(q_i \, (i=1 , \ldots , n)\), is a gamma random variable \(G \sim \gamma (n\bar{q} , \theta )\), where \(n\bar{q}\) is the sum \(\sum _{i=1}^n q_i\). This is for instance deduced from the characteristic function of \(G\),

$$\begin{aligned}\phi _G(t)=E(e^{itG})=\frac{1}{\prod _{k=1}^n\left( 1-it\theta \right) ^{q_k}}=\frac{1}{\left( 1-it\theta \right) ^{n\bar{q}}}\end{aligned}$$

From the previous set of \(n=m+1\) independent gamma random variables, we define a random vector \(\varvec{L}_{(n)}=(L_1,L_2,\ldots ,L_n)\) whose components are \(L_i=G_i/G\). The distribution of \(\varvec{L}_{(n)}\) is then called a Dirichlet distribution with parameters \(\varvec{q_{(n)}}=(q_1, \ldots ,q_n)\), \(\varvec{L_{(n)}} \sim D(\varvec{q_{(n)}})\). Its pdf is shown to be ([11] p. 17)

$$\begin{aligned} \left\{ \begin{array}{ll} f(l_1,\ldots ,l_m)=\left( \frac{\Gamma (n\bar{q})}{\prod _{i=1}^n\Gamma (q_i)}\right) \prod _{i=1}^nl_i^{q_i-1} \\ l_n=1-\sum _{i=1}^ml_i, l_i > 0, i=1,\ldots , n \end{array} \right. \end{aligned}$$
(6.2)

When the shape parameters are all equal to \(q\), i. e. when \(G_i \sim \gamma (q,\theta ) \; (i=1, \ldots ,n)\), the pdf (6.2) becomes invariant under permutation, \(f(l_1,\ldots ,l_m)=\left( \frac{\Gamma (nq)}{\Gamma (q)^n}\right) \left\{ \prod _{i=1}^nl_i\right\} ^{q-1}\). Finally, when the \(G_i\)’s are exponentially distributed, \(q=1\), the random vector \(\varvec{L}_{(n)}\) is uniformly distributed over the unit \((n-1)\) simplex as \(f(l_1,\ldots ,l_m)=m!\).

Appendix 2: Hypergeometrical Differential Equation Characterization

We recall that \(F(l) := \ _2F_1(a,b;c;l)\) is the solution of the following differential equation:

$$\begin{aligned} l(1-l)F''(l)+[c-(a+b+1)l]F'(l)-abF(l)=0 \end{aligned}$$

so, letting \( _2F_1\left( 2d-1-k,d;\frac{3d-k}{2};l\right) =F(l)\), we have

$$\begin{aligned} l(1-l)F''(l)+\left[ \frac{3d-k}{2}-(3d-k)l\right] F'(l)-d(2d-1-k)F(l)=0 \end{aligned}$$

and similarly

$$\begin{aligned} l(1-l)F''(1-l)+\left[ \frac{3d-k}{2}-(3d-k)(1-l)\right] F'(1-l)-d(2d-1-k)F(1-l)=0 \end{aligned}$$

that is

$$\begin{aligned} l(1-l)F''(1-l)-\left[ \frac{3d-k}{2}-(3d-k)l\right] F'(1-l)-d(2d-1-k)F(1-l)=0 \end{aligned}$$

Let \(G(l)=\frac{f_{d,k}(l)}{\left[ l(1-l)\right] ^{d-2}}\), by (22), we get

$$\begin{aligned} G(l)=C\left\{ F(l)+F(1-l)\right\} . \end{aligned}$$

Taking the derivative two times, we obtain

$$\begin{aligned} G'(l)=C\left\{ F'(l)-F'(1-l)\right\} \; \text{ and } \; G''(l)=C\left\{ F''(l)+F''(1-l)\right\} \end{aligned}$$

and substituting

$$\begin{aligned} l(1-l)G''(l)+\left[ \frac{3d-k}{2}-(3d-k)l\right] G'(l)-d(2d-1-k)G(l)=0 \end{aligned}$$
(7.1)

It follows that \(G\) is also a solution of a hypergeometrical differential equation. For basic results on these differential equations see [1], Table 15.5.

For \(-1< r < 1\) the change of variable \(l=\frac{1+r}{2}\) in (7.1) gives

$$\begin{aligned} (1-r^2)F''(r)-(3d-k)rF'(r)-d(2d-1-k)F(r)=0 \end{aligned}$$

where \(F(r)=G(\frac{1+r}{2})\). This is the the Gegenbauer equation which has a unique symmetric solution such that: \(F(0)=C\) and \(F'(0)=0\). It is \(F(r)=C\times \ _2F_1(\frac{2d-k-1}{2},\frac{d}{2},\frac{1}{2},r^2)\), see [6], p. 65, the density (15) is easily retrieved.

In the following proposition we prove that the only hyperuniform random walks \(HU_d(k)\) which are at the same time symmetric Dirichlet random walks are obtained for \(k=2d-1\) and \(k=2d-2\) as shown in Eqs. (20) and (21).

Proposition 3

Suppose that \(f_L(l)=C\left[ l(1-l)\right] ^{\alpha -1}\), then \(\varvec{S}_d(L)\) is \(HU_d(k)\) if and only if \(k=2d-1\) and \(\alpha =d-1\) or \(k=2d-2\) and \(\alpha =\frac{d}{2}-1\).

Proof

Suppose that \(f_{d,k}(l)=C\left[ l(1-l)\right] ^{\alpha -1}\). Then \(G(l)=C\left[ l(1-l)\right] ^{\alpha -d+1}\) and we have

$$\begin{aligned} G'(l)=(\alpha -d+1)\left[ l(1-l)\right] ^{\alpha -d}(1-2l) \end{aligned}$$
$$\begin{aligned} G''(l)=(\alpha -d+1)\left[ l(1-l)\right] ^{\alpha -d-1}\left\{ (\alpha -d)(1-2l)^2-2l+2l^2\right\} \end{aligned}$$

So from (7.1) we obtain:

$$\begin{aligned}&(\alpha -d+1)\left\{ (\alpha -d)(1-2l)^2-2l+2l^2\right\} +\frac{3d-k}{2}(\alpha -d+1)(1-2l)^2\\&\quad -d(2d-1-k)(l-l^2)=0 \end{aligned}$$

which is of the form \(Bl^2-Bl+A=0\) with

$$\begin{aligned} A=(\alpha -d+1)\left\{ (\alpha -d)+\frac{3d-k}{2}\right\} \end{aligned}$$

and

$$\begin{aligned} B=4(\alpha -d+1)(\alpha -d)+2(\alpha -d+1)+2(3d-k)(\alpha -d+1)+d(2d-1-k) \end{aligned}$$

From the condition \(A=B=0\), we get the only solutions

$$\begin{aligned} k=2d-1 ,\;\alpha =d-1 \text { and } k=2d-2 , \;\; \alpha =\frac{d}{2}-1. \end{aligned}$$

\(\square \)

These solutions were obtained by a different method in [21].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casini, E., Le Caër, G. & Martinelli, A. Short Hyperuniform Random Walks. J Stat Phys 160, 254–273 (2015). https://doi.org/10.1007/s10955-015-1244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1244-7

Keywords

Navigation