Skip to main content
Log in

Multiscale Conservation Laws Driven by Lévy Stable and Linnik Diffusions: Asymptotics, Shock Creation, Preservation and Dissolution

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recent work has shown that the solutions of the fractal conservation laws driven by Lévy \(\alpha \)-stable diffusions exhibit shocks for bounded, odd, and convex on the positive half-line, initial data when the parameter \(\alpha < 1. \) We study the analogous situation for the Lévy \(\alpha \)-Linnik diffusions in which case the local behavior is strikingly different, although we are able to establish analytically that the large time behavior of the two types of conservation laws are similar. But the main new insights obtained via large-scale numerical experiments is that, for any \(0<\alpha \le 2\), the conservation laws driven by \(\alpha \)-Linnik diffusions display shocks that do not dissipate over time, while those for \(\alpha \)-stable diffusion (\(0<\alpha \le 1\)) do. We formulate rigorous conjectures based on these numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In what follows, in view of the physical context of the discussions, we will also use the term Lévy diffusions, instead of Lévy processes.

  2. See, e.g., [8, 18], for basic information in this area.

  3. In this paper we use the convention, \((\mathcal{F}f)(\xi )=\int _{\mathbb R} e^{-i\xi x} f( x)\,dx\), and \((\mathcal{F}^{-1}g)(x)=\frac{1}{2 \pi }\int _{\mathbb R} e^{ i\xi x} g( \xi )\,d\xi \).

  4. The particle approximations and the propagation of chaos results for such systems have been studied in [22].

  5. The Matlab code, as well as the results of numerical computations for other values of \(\alpha \) can be found on the webpage of the second-named author: https://sites.google.com/a/case.edu/waw.

References

  1. Alibaud, N., Droniou, J., Vovelle, J.: Occurrence and non-appearance of shocks in fractal Buergers equations. J. Hyperbolic Diff. Equ. 4(3), 479–499 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Bertoin, J.: Lévy Processes: Theory and Applications. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  4. Biler, P., Funaki, T., Woyczyński, W.A.: Fractal Burgers equations. J. Differ. Equ. 148, 9–46 (1998)

    Article  MATH  ADS  Google Scholar 

  5. Biler, P., Karch, G., Woyczyński, W.A.: Asymptotics of multifractal conservation laws. Studia Math. 135, 231–252 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Biler, P., Karch, G., Woyczyński, W.A.: Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws. Ann. Inst. H. Poincaré Nonlineaire Anal. 18, 613–637 (2001)

    Article  MATH  ADS  Google Scholar 

  7. Biler, P., Karch, G., Woyczyński, W.A.: Asymptotics for conservation laws involving Lévy diffusion generators. Studia Math. 148, 171–192 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Böttcher, B., Schilling, R.L., Wang, J.: Lévy Matters III. Lévy-Type processes: Construction, Approximation and Sample Path Properties. Springer-Verlag, Berlin, New York (2013)

    Book  Google Scholar 

  9. Burnecki, K., Janczura, J., Magdziarz, M., Weron, A.: Can one see a competition between subdiffusion and Lévy flights? A case of geometric-stable noise. Acta Phys. Pol. B 39, 1043–1053 (2008)

    ADS  Google Scholar 

  10. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall, Boca Raton (2012)

    Google Scholar 

  11. Devroye, L.: A note on Linnik’s distributions. Stat. Probab. Lett. 9, 305–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Droniou, J.: A numerical method for fractal conservation laws. Math. Comput. 79(269), 95–124 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Droniou, J., Imbert, C.: Fractal first order partial differential equations. Arch. Ration. Mech. Anal. 182, 299–331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Droniou, J., Gallouet, T., Vovelle, J.: Global solutions and smoothing effect for a non-local regularization of an hyperbolic equation. J. Evol. Equ. 3, 499–521 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Erdogan, M.B., Ostrovskii, I.V.: Analytic and asymptotic properties of generalized Linnik probability densities. J. Math. Anal. Appl. 217, 555–578 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Górska, K., Woyczyński, W.A.: Explicit representations for multiscale Lvy processes, and asymptotics of multifractal conservation laws. arXiv:1502.0027 (2015)

  17. Imbert, C., Souganidis, P.E.: Phasefield theory for fractional diffusion-reaction equations and applications. arXiv:0907.5524 (2009)

  18. Jacob, N.: Pseudo-Differential Operators and Markov Processes, vol. 1–3. Imperial College Press, London (2002–2005)

  19. Jacob, N., Schilling, R.: Lévy-type processes and pseudo differential operators. In: Barndorff-Nielsen, O., Mikosch, T., Resnick, S. (eds.) Lévy Processes. Bikhäuser, Boston (2001)

    Google Scholar 

  20. Janicki, A., Weron, A.: Simulation and Chaotic Behavior of \(\alpha \)-Stable Stochastic Processes. Marcel Dekker Inc, New York (1994)

    Google Scholar 

  21. Janicki, A., Woyczynski, W.A.: Hausdorff dimension of regular points in stochastic Burgers flows with Lévy alpha-stable initial data. J. Stat. Phys. 88, 277–299 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  22. Jourdain, B., Méléard, S., Woyczynski, W.A.: Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws. Bernoulli 11, 689–714 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karch, G., Woyczynski, W.A.: Fractal Hamilton-Jacobi-KPZ equations. Trans. Am. Math. Soc. 360, 2423–2442 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kotz, S., Kozubowski, T.J., Hayfavi, A.: Analytic and asymptotic properties of Linnik’s probability densities. J. Math. Anal. Appl. 193, 353–371, 497–521 (1995)

  25. Kotz, S., Kozubowski, T.J., Podgórski, K.: The Laplace Distribution and Generalizations. Springer, New York (2001)

    Book  MATH  Google Scholar 

  26. Kozubowski, T.J.: The inner characterization of geometric stable laws. Stat. Decis. 12, 307–321 (1994)

    MATH  MathSciNet  Google Scholar 

  27. Kozubowski, T.J., Rachev, S.T.: Univariate geometric stable laws. J. Comput. Anal. Appl. 1(2), 177–217 (1999)

    MATH  MathSciNet  Google Scholar 

  28. Linnik, J.V.: Linear forms and statistical criteria, I, II. Select. Transl. Math. Statist. Probab 3, 1–90 (1963)

    MathSciNet  Google Scholar 

  29. Mann, J.A., Woyczyński, W.A.: Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Phys. A 291, 159–183 (2001)

    Article  MATH  Google Scholar 

  30. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, vol. 43. Walter de Gruyter, Berlin (2012)

  31. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion; a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Pakes, A.G.: Mixture representations for symmetric generalized Linnik laws. Statist. Probab. Lett. 37, 213–221 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Piryatinska, A., Saichev, A.I., Woyczynski, W.A.: Models of anomalous diffusion: the subdiffusive case. Phys. A 349, 375–424 (2005)

    Article  Google Scholar 

  34. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York (1994)

  35. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  36. Schoutens, W.: Levy Processes in Finance. Wiley, Chichester (2003)

    Book  Google Scholar 

  37. Smoller. J.: Shock Waves and Reaction—Diffusion Equations, 2nd ed. Springer-Verlag, New York (1994)

  38. Uchaykin, V.V., Zolotarev, V.M.: Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht (1999)

    Book  Google Scholar 

  39. Woyczyński, W.A.: Burgers-KPZ Turbulence: Göttingen Lectures. Springer, New York (1998)

    MATH  Google Scholar 

  40. Woyczyński, W.A.: Lévy Processes in the physical sciences. In: Barndorff-Nielsen, O., Mikosch, T., Resnick, S. (eds.) Lévy Processes. Bikhäuser, Boston (2001)

    Google Scholar 

  41. Zuazua, E.: Weakly nonlinear large time behavior in scalar convection-diffusion equations. Differ. Integr. Equ. 6, 1481–1491 (1993)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers whose thorough reading and extensive comments helped improve the final version of this paper. One of the referees also suggested some very interesting possible avenues of further research in the area that are certainly worth pursuing. The authors are grateful to René Schilling of Technische Universitaet Dresden for careful reading of the manuscript and comments that led to significant improvements of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Woyczyński.

Appendix: A Numerical Method for Stable and Linnik Conservation Laws

Appendix: A Numerical Method for Stable and Linnik Conservation Laws

In this section, we present the details of the numerical method used to produce results of Sect. 6, adapting to the Linnik case the methodology developed in [12].

Let \( \delta _{t}>0 \ \), and \( \delta x >0 \) be the time and space steps. The scheme consists in computing approximate values \( u_{i}^{n} \ \) of the solution to (4.1) on the lattice \( \ [n\delta t, (n+1)\delta t) \times [i \delta x, (i+1)\delta x) \ \), \( n \in \mathbb {N} \), and \( i \in \mathbb {Z}, \)

$$\begin{aligned} u_{i}^{0}=\frac{1}{\delta x}\int _{i \delta x}^{(i+1)\delta x}u_{o}(x)dx, \end{aligned}$$
(6.1)
$$\begin{aligned} \frac{\delta t}{\delta x}\left( u_{i}^{n+1}-u_{i}^{n} \right) + F\left( u_{i}^{n}, u_{i+1}^{n}\right) - F\left( u_{i-1}^{n}, u_{i}^{n}\right) + \delta x \mathcal {L}^{\delta x}[u^{n+1}]_{i} =0, \end{aligned}$$
(6.2)

where \( F \) is a numerical Burgers flux corresponding to the continuous flux \( f \), and \( \mathcal {L}^{\delta x} \) is a discretization of the non-local term \( \mathcal {L}, \) where \(\mathcal {L}^{\delta x} \) is the discretization of \( \mathcal {L}, \ \) and the numerical flux is defined as follows:

$$\begin{aligned} F(a,b)=\left\{ \begin{array}{ll} \displaystyle \min \limits _{ a \le u \le b}\frac{u^2}{2}, &{}\quad \text {if } a \le b ; \\ \displaystyle \max \limits _{b \le u \le a}\frac{u^2}{2}, &{}\quad \text {if } a > b. \end{array} \right. \end{aligned}$$

The assumptions on \( \mathcal {L}^{\delta x} \) are as follows:

  1. (i)

    \( l^{\infty }(\mathbb {Z})\ni \nu \mapsto \mathcal {L}^{\delta x}[\nu ]\in l^{\infty }(\mathbb {Z}) \ \) is linear;

  2. (ii)

    \( \forall \nu \in l^{\infty }(\mathbb {Z}), \ \) if \( \ \left( i_{k} \right) _{k \in \mathbb {N}} \ \) is a sequence in \( \mathbb {Z} \) such that \( \ \lim _{k\rightarrow \infty }\nu _{i_{k}}= \qquad \sup _{j \in \mathbb {Z}}\nu _{j}, \ \) then \( \ \lim \inf _{k\rightarrow \infty }\mathcal {L}^{\delta x}[\nu ]_{i_{k}} \ge 0 \);

  3. (iii)

    If \( \tau : l^{\infty }(\mathbb {Z})\mapsto l^{\infty }(\mathbb {Z}) \ \) is the left translation \( \ \tau (\nu )_{i}=\nu _{i+1}, \) then \( \ \tau \mathcal {L}^{\delta x}=\mathcal {L}^{\delta x}\tau \);

  4. (iv)

    \( \exists A^{\delta x} >0 \ \) such that, for all \( \nu \in l^{\infty }(\mathbb {Z}), \ \) \( \ \mathcal {L}^{\delta x}[\nu ]_{0} \ \) only depends on \( \ \left( \nu _{j} \right) _{|j| \le A^{\delta x}}. \ \)

A detailed description of the implementation of the numerical algorithm is provided below.

For a chosen space step \( \delta x >0 , \ \) formula (4.2) makes it easy to write a discretization of \( \ \mathcal {L}: \) we approximate each integral using the basic quadratic rule on the mesh \( \ \left( [j\delta x, (j+1)\delta x) \right) _{j \in \mathbb {Z}} \ \), and we use the finite difference approximation of the derivative. However, such an approximation would use all of \( \ (\nu _{j})_{j \in \mathbb {Z}} \ \) in order to compute \( \ \mathcal {L}^{\delta x}[\nu ]_{i}; \ \) in practical applications, the considered functions are usually constant near \( \ -\infty \ \) and \( \ +\infty . \ \) We take this into account when discretizating \( \ \mathcal {L} \ \) and use the mesh \( \ \left( [j\delta x, (j+1)\delta x) \right) _{j \in \mathbb {Z}} \ \) only up to \(\ |z|=J_{\delta x}\delta x \ \) (for some integer \( \ J_{\delta x} \ \) such that \( \ J_{\delta x}\delta x \rightarrow \infty \ \) as \( \ \delta x \rightarrow 0 \ \)), approximating the remaining parts with two unbounded space steps \( \ (-\infty , -J_{\delta x}\delta x] \ \) and \( \ [J_{\delta x}\delta x, +\infty ). \ \) This leads to the scheme,

$$\begin{aligned} \mathcal {L}^{\delta x}[\nu ]_{i}= & {} -c(\alpha )\sum _{0 < |j| < r/\delta x}\delta x \left( \nu _{i+j}-\nu _{i} - \frac{\nu _{i+1}-\nu _{i-1}}{2 \delta x} \right) \Lambda ^{'}(j \delta x)\nonumber \\&-c(\alpha )\sum _{r/\delta x < |j| \le J_{\delta x}} \delta x \left( \nu _{i+j}-\nu _{i} \right) \Lambda ^{'}(j \delta x)\nonumber \\&-c(\alpha )\sum _{j <-J_{\delta x}} \delta x \left( \nu _{i-J_{\delta x}-1}-\nu _{i} \right) \Lambda ^{'}(j \delta x)\nonumber \\&-c(\alpha )\sum _{j>J_{\delta x}} \delta x \left( \nu _{i+J_{\delta x}+1}-\nu _{i} \right) \Lambda ^{'}(j \delta x) \end{aligned}$$
(6.3)

where

$$\begin{aligned} \Lambda ^{'}(j \delta x)=\frac{\alpha }{2|j \delta x|}\mathbb E\exp \left( -\left| \frac{j \delta x}{X}\right| ^{\alpha } \right) , \end{aligned}$$

and \( X \) has a \(\alpha \)-stable distribution.

Additionally, we can estimate the approximate value of \( \ \sum _{j>J_{\delta x}}\Lambda ^{'}(j \delta x) \) using the formula (2.22) for the Lévy measure of \(\alpha \)-Linnik distribution,

$$\begin{aligned}&\int _{J_{\delta x}}^{\infty }\int _{0}^{\infty }f_{\alpha }\left( \frac{j \delta x}{w^{1/\alpha }} \right) .\frac{e^{-w}}{w^{1 + 1/ \alpha }}dw dj \\&\quad = \int _{0}^{\infty }\int _{J_{\delta x}}^{\infty }f_{\alpha }\left( \frac{j \delta x}{w^{1/\alpha }} \right) dj.\frac{e^{-w}}{w^{1 + 1/ \lambda }}dw \\&\quad \sim \int _{0}^{\infty }\int _{J_{\delta x}}^{\infty }\left( \frac{w^{1/\alpha }}{\delta x} \right) f_{\alpha }\left( \frac{j \delta x}{w^{1/\alpha }} \right) d\left( \frac{j \delta x}{w^{1/\alpha }} \right) \frac{e^{-w}}{w^{1 + 1/ \alpha }}dw \\&\quad =\int _{0}^{\infty }\left( \frac{w^{1/\lambda }}{\delta x} \right) . \left( \frac{k_{\alpha }}{\left( \frac{j\delta x}{w^{1/\alpha }}\right) ^\alpha } \right) .\frac{e^{-w}}{w^{1 + 1/ \alpha }}dw \\&\quad =\int _{0}^{\infty }\frac{k_{\alpha }}{\delta x^ {\alpha +1} J_{\delta x}^\alpha }e^{-w}dx \\&\quad =\frac{k_{\alpha }}{\delta x^{\alpha +1}J_{\delta x}^{\alpha }}, \end{aligned}$$

where \( \ k_{\alpha }= { \sin (\frac{\pi \alpha }{2})\Gamma (\alpha )}/{\pi }. \ \) Therefore, the approximate value of \( \ \mathcal {L}^{\delta x}[\nu ]_{i} \ \) is given by the following formula,

$$\begin{aligned} \mathcal {L}^{\delta x}[\nu ]_{i} =&-c(\alpha )\sum _{0 < |j| < r/\delta x}\delta x \left( \nu _{i+j}-\nu _{i}\right) \frac{\alpha }{2|j \delta x|}\mathbb E\exp \left( -\left| \frac{j \delta x}{X}\right| ^{\alpha } \right) \\&-c(\alpha )\left( \nu _{i-J_{\delta x}-1}-\nu _{i} \right) \frac{k_{\alpha }}{(\delta x J_{\delta x})^\alpha } -c(\alpha )\left( \nu _{i+J_{\delta x}+1}-\nu _{i} \right) \frac{k_{\alpha }}{(\delta x J_{\delta x})^\alpha } \end{aligned}$$

Finally, we have

$$\begin{aligned} \mathcal {L}^{\delta x}[\nu ]_{i} =&-c(\alpha )\sum _{0 < |j| < r/\delta x}\delta x \left( \nu _{i+j}-\nu _{i}\right) \frac{\alpha }{2|j \delta x|}\mathbb E\exp \left( -\left| \frac{j \delta x}{X}\right| ^{\alpha } \right) .\nonumber \\&-c(\alpha )\left( \nu _{i-J_{\delta x}-1}-\nu _{i} \right) \frac{\sin (\frac{\pi \alpha }{2})\Gamma (\alpha )}{\pi (\delta x J_{\delta x})^\alpha } -c(\alpha )\left( \nu _{i+J_{\delta x}+1}-\nu _{i} \right) \frac{\sin (\frac{\pi \alpha }{2})\Gamma (\alpha )}{\pi (\delta x J_{\delta x})^\alpha }.\nonumber \\ \end{aligned}$$
(6.4)

The step-by-step numerical algorithm for computation of the solution of the Linnik conservation law is as follows:

Step 1: Define \( \nu , \) \( \ W, \) \( \ \mathcal {L}^{\delta x} \ \) and \( G^{\delta x},\) by the following formulae:

  1. (i)
    $$\begin{aligned} \nu =\left( h_{i}^{n}1_{\mathbb {Z}\setminus [-m,m]}(i)\right) _{|i|\in \mathbb {Z}}. \end{aligned}$$

    For example, for \( \ m=2, \ \)

    $$\begin{aligned} \nu ^T = \left[ \begin{array}{@{}cc|c@{}} \ldots h_{-4}^{n} , h_{-3}^{n} , 0 ,0 , 0 , 0 ,0 ,h_{3}^{n} , h_{4}^{n} , \ldots \end{array}\right] \end{aligned}$$

    so that \( \ \nu _{2}=0, \ \) \( \ \nu _{-4}= h_{-4}^{n} \ \), etc.

  2. (ii)
    $$\begin{aligned} W&= \left( U_{i}^{n+1}\right) _{|i|\le m} = \left( \begin{array}{ccc} U_{-m}^{n+1} \\ \vdots \\ U_{0}^{n+1} \\ \vdots \\ U_{m}^{n+1} \end{array} \right) _{(2m+1)\times 1} \end{aligned}$$
  3. (iii)
    $$\begin{aligned} \mathcal {L}^{\delta x}[\nu ]_{i}= & {} -c(\alpha )\sum _{0< |j|\le J_{\delta x}}\delta x (\nu _{i+j}-\nu _{i}) \Lambda ^{'}(j \delta x) \\&-c(\alpha )(\nu _{i-J_{\delta x}-1}-\nu _{i}) \frac{\sin (\frac{\pi \alpha }{2})\Gamma (\alpha )}{\pi (\delta x J_{\delta x})^\alpha }\\&-c(\alpha ) (\nu _{i+J_{\delta x}+1}-\nu _{i}) \frac{\sin (\frac{\pi \alpha }{2})\Gamma (\alpha )}{\pi (\delta x J_{\delta x})^\alpha }\\= & {} -c(\alpha )\sum _{0< |j|\le J_{\delta x}}\delta x (h_{i+j}^{n}\!-\!h_{i}^{n})\Lambda ^{'}(j \delta x)\! -\!c(\alpha ) (h_{i-J_{\delta x}-1}^{n}-h_{i}^{n})\frac{\sin (\frac{\pi \alpha }{2})\Gamma (\alpha )}{\pi (\delta x J_{\delta x})^\alpha }\\&-c(\alpha )(h_{i+J_{\delta x}+1}^{n}-h_{i}^{n})\frac{\sin (\frac{\pi \alpha }{2})\Gamma (\alpha )}{\pi (\delta x J_{\delta x})^\alpha }\\= & {} c_1\sum _{0< |j|\le J_{\delta x}}(h_{i+j}^{n}-h_{i}^{n})\Lambda ^{'}(j \delta x)+c_2 \left( h_{i-J_{\delta x}-1}^{n}-h_{i}^{n} \right) \\&+\, c2 \left( h_{i+J_{\delta x}+1}^{n}-h_{i}^{n} \right) , \end{aligned}$$

    where \( c_1=-c(\alpha ) \ \), and \( \ c_2= {-c(\alpha ) \sin (\frac{\pi \alpha }{2})\Gamma (\alpha )}/({\pi (\delta x J_{\delta x})^\alpha } ). \)

  4. (iv)

    The formula for the 1st column of the symmetric Toeplitz matrix \( G^{\delta x} \) is given below. Recall that an \( (n\times n) \) matrix \( A \) is said to be Toeplitz if it has the form

    $$\begin{aligned} A=[a_{j-k}]_{j,k=1}^{n} \end{aligned}$$
    (6.5)

    The entries along each diagonal of a Toeplitz matrix are constant. The 1st column of a symmetric Toeplitz matrix \( G^{\delta x} \) is as follows:

    $$\begin{aligned} G(1)&= \left( \begin{array}{ccc} -2c1 \displaystyle \sum \limits _{j=1}^{1500}\Lambda ^{'}(j \delta x)-2c2 \\ \Lambda ^{'}(1. \delta x)\\ \Lambda ^{'}(2. \delta x)\\ \Lambda ^{'}(3. \delta x)\\ \vdots \\ \Lambda ^{'}(1500. \delta x) \end{array} \right) _{1501\times 1} \end{aligned}$$

    and the 1st column of the symmetric, positive definite Toeplitz matrix \( \left( I+ \delta t G^{\delta x}\right) \)

    $$\begin{aligned} \left( I+ \delta t G^{\delta x}\right) (1)&= \left( \begin{array}{ccc} 1-2c1. \delta t \displaystyle \sum \limits _{j=1}^{1500}\Lambda ^{'}(j \delta x)-2c2.\delta t \\ \delta t.\Lambda ^{'}(1. \delta x)\\ \delta t.\Lambda ^{'}(2. \delta x)\\ \delta t.\Lambda ^{'}(3. \delta x)\\ \vdots \\ \delta t.\Lambda ^{'}(1500. \delta x) \end{array} \right) _{1501\times 1} \end{aligned}$$

    Now, the complete symmetric Toeplitz matrix now can be found because it is determined by the first column.

  5. (v)

    With the numerical Burgers flux defined at the beginning of this Appendix, we have:

    $$\begin{aligned} F(a,b)=\left\{ \begin{array}{ll} \displaystyle a^2/2, &{}\quad \text {if} a,b>0; \\ \displaystyle b^2/2, &{}\quad \text {if} a,b<0; \\ \displaystyle 0, &{}\quad \text {if} a<0,b>0; \\ \displaystyle b^2/2, &{}\quad \text {if } a>0,b<0, |a|<|b|; \\ \displaystyle a^2/2, &{}\quad \text {otherwise}.\\ \end{array} \right. \end{aligned}$$

Step 2: Assume

$$\begin{aligned} u_{i}^{0}=\left\{ \begin{array}{ll} \ -1, &{}\quad \text {if } i \ge 0 ; \\ \ 1, &{}\quad \text {if } i < 0. \end{array} \right. \end{aligned}$$

and \( \ \delta t= 0.00167, \) \( \ m=750. \)

Step 3: For each \(i\), find \( h_{i}^{0} \ \), and use the equation

$$\begin{aligned} h_{i}^{n}= \left\{ \begin{array}{ll} \ u_{i}^{n} + \frac{\delta t}{\delta x}F(u_{i-1}^{n}, u_{i}^{n})- \frac{\delta t}{\delta x}F(u_{i}^{n}, u_{i+1}^{n}),&{}\quad \text {if} \ \ 3001 \le i \le 4501; \\ \ u_{i+1}^{n}, &{}\quad \text {otherwise.} \end{array} \right. \end{aligned}$$

Since \( u_{i}^{0}\) are known for all \( i \), we can calculate \( h_{i}^{0} \ \) for all \( i.\)

If \( \nu \ \) and \( W \ \) are defined as in Step 1, the above equation reduces to a square system of size \( 2m+1 \ \) on \( \ W\):

$$\begin{aligned} W+\delta tG^{\delta x}W=\left( h_{i}^{0} - \delta t g^{\delta x}[\nu ]_{i}\right) _{|i|\le 750} \end{aligned}$$

Step 4: Find \( u_{i}^{1}, \ \) for all i. A Toeplitz matrix \( A \) (see, Step 1) is said to be circulant if it has the form

$$\begin{aligned} a_{-k}=a_{n-k}, \quad 1 \le k \le n-1. \end{aligned}$$
(6.6)

Obviously, any circulant matrix is uniquely determined by its first column,

$$\begin{aligned} a=[a_{0},a_{1} , a_{2}, \dots , a_{n-2} , a_{n-1}]^T. \end{aligned}$$

Next, we employ the equation (6.5) to calculate \( u_{i}^{1} \), for all \( i \), using the standard preconditioned conjugate gradient method, where \( A \ \) is the symmetric positive definite matrix \(\ I + \delta t G^{\delta x} \ \), of dimension (1501 \( \times \) 1501) (defined in Step 1), and \(\ \mathbf x= W \ \), is as defined in the Step 1. Taking \( n=0, \) we have

$$\begin{aligned} \mathbf x = \left( U_{i}^{1}\right) _{|i|\le 750} = \left( \begin{array}{ccc} U_{-750}^{1} \\ \vdots \\ U_{0}^{1} \\ \vdots \\ U_{750}^{1} \end{array} \right) _{1501 \times 1} \end{aligned}$$

The vector

$$\begin{aligned} \ \mathbf {b}= \left( h_{i}^{0} - \delta t \mathcal {L}^{\delta x}[\nu ]_{i}\right) _{|i|\le 750},\end{aligned}$$

defined by equation (6.5) has the dimension \( \ 1501 \times 1. \ \) Here, we know the values of \( \ h_{i}^{0} \ \) for all \( i\), and the formula for \( \ \mathcal {L}^{\delta x}[\nu ]_{i} \ \) is defined in Step 1. For example,

$$\begin{aligned} \mathcal {L}^{\delta x}[\nu ]_{-750}&=\,c1\sum _{0< |j|\le 1500}\left( h_{-750+j}^{0}-h_{-750}^{0}\right) \Lambda ^{'}(j \delta x) +c2 \left( h_{-750-1500-1}^{0}-h_{-750}^{0} \right) \\&\quad +\, c2 \left( h_{-750+1500+1}^{0}-h_{-750}^{0} \right) \end{aligned}$$

Step 5: Find \( h_{i}^{1}\), for all i. Since we already know \(u_{i}^{1}\), the values for \(h_{i}^{1}\), for all \(i \), can be calculated by going back to Step 3. Then we move forward to Step 4 to calculate \( u_{i}^{2}\) for all \(i \). Finally we need repeat the procedure to calculate the values of \(u_{i} , i=1,\dots , n\), for \( n=300.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunaratnam, B., Woyczyński, W.A. Multiscale Conservation Laws Driven by Lévy Stable and Linnik Diffusions: Asymptotics, Shock Creation, Preservation and Dissolution. J Stat Phys 160, 29–59 (2015). https://doi.org/10.1007/s10955-015-1240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1240-y

Keywords

Navigation