Skip to main content
Log in

Hierarchical Equations for Open System Dynamics in Fermionic and Bosonic Environments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present two approaches to the dynamics of an open quantum system coupled linearly to a non-Markovian fermionic or bosonic environment. In the first approach, we obtain a hierarchy of stochastic evolution equations of the diffusion type. For the bosonic case such a hierarchy has been derived and proven suitable for efficient numerical simulations recently (Suess et al. in Phys. Rev. Lett. 113, 150403, 2014). The stochastic fermionic hierarchy derived here contains Grassmannian noise, which makes it difficult to simulate numerically due to its anti-commutative multiplication. Therefore, in our second approach we eliminate the noise by deriving a related hierarchy for density matrices. A similar reformulation of the bosonic hierarchy of pure states to a master equation hierarchy and its relation to the hierarchical equations of motion of Tanimura and Kubo is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The integral boundaries in (9) arise from the specific vacuum initial conditions (5); see [17, Footnote 42] for details.

  2. To obtain dimensionless auxiliary states, one can absorb the dimension of the derivative operators \( D_{j,t} ^{k_j}\) into the system’s coupling operators \(L\), which then has the dimension of energy. To be consistent, one also has to rescale \({Z}^*_t\) accordingly.

  3. Of course, one can also try to approximate the BCF directly by a sum of exponentials.

  4. The bounded integral domain in the memory integral that appears in the final equation is due to vacuum initial conditions (5).

References

  1. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  2. May, V., Kühn, O.: Charge and Energy Transfer Dynamics in Molecular Systems. WILEY-VCH, New York (2000)

    Google Scholar 

  3. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. OUP, Oxford (2007)

    Book  MATH  Google Scholar 

  4. Feynman, R.P., Vernon Jr, F.L.: The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963). doi:10.1016/0003-4916(63)90068-X

    Article  ADS  MathSciNet  Google Scholar 

  5. Roden, J., et al.: Accounting for intra-molecular vibrational modes in open quantum system description of molecular systems. J. Chem. Phys. 137(20), 204110 (2012). doi:10.1063/1.4765329

    Article  ADS  Google Scholar 

  6. Jin, J., Zheng, X., Yan, Y.: Exact dynamics of dissipative electronic systems and quantum transport: hierarchical equations of motion approach. J. Chem. Phys. 128(23), 234703 (2008). doi:10.1063/1.2938087

    Article  ADS  Google Scholar 

  7. Timm, C.: Tunneling through molecules and quantum dots: Master-equation approaches. Phys. Rev. B 77, 195416 (2008). doi:10.1103/PhysRevB.77.195416

    Article  ADS  Google Scholar 

  8. Croy, A., Saalmann, U.: Propagation scheme for nonequilibrium dynamics of electron transport in nanoscale devices. Phys. Rev. B 80, 245311 (2009). doi:10.1103/PhysRevB.80.245311

    Article  ADS  Google Scholar 

  9. Popescu, B., Kleinekathöfer, U.: Treatment of time-dependent effects in molecular junctions. Phys. Status Solidi (b) 250(11), 2288–2297 (2013). doi:10.1002/pssb.201349172

    Article  ADS  Google Scholar 

  10. Zhang, W.-M., et al.: General non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 109(17), 170402 (2012). doi:10.1103/PhysRevLett.109.170402

    Article  ADS  Google Scholar 

  11. Strunz, W.T.: Linear quantum state diffusion for non-Markovian open quantum systems. Phys. Lett. A 224(1—-2), 25–30 (1996). doi:10.1016/S0375-9601(96)00805-5

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Diósi, L.: Exact semiclassical wave equation for stochastic quantum optics. Quant. Semiclass. Opt. 8(1), 1996, 309–314. (1996) http://stacks.iop.org/1355-5111/8/309

  13. Diósi, L., Strunz, W.T.: The non-Markovian stochastic Schrödinger equation for open systems. Phys. Lett. A 235(6), 569–573 (1997). doi:10.1016/S0375-9601(97)00717-2

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Diósi, L., Gisin, N., Strunz, W.T.: Non-Markovian quantum state diffusion. Phys. Rev. A 28(3), 1699–1712 (1998). doi:10.1103/PhysRevA.58.1699

    Article  ADS  Google Scholar 

  15. Zhao, X., et al.: Fermionic stochastic Schrödinger equation and master equation: An open-system model. Phys. Rev. A 86(3), 032116 (2012). doi:10.1103/PhysRevA.86.032116

    Article  ADS  Google Scholar 

  16. Chen, M., You, J.Q.: Non-Markovian quantum state diffusion for an open quantum system in fermionic environments. Phys. Rev. A 87(5), 052108 (2013). doi:10.1103/PhysRevA.87.052108

    Article  ADS  MathSciNet  Google Scholar 

  17. Suess, D., Eisfeld, A., Strunz, W.T.: Hierarchy of stochastic pure states for open quantum system dynamics. Phys. Rev. Lett. 113, 150403 (2014). doi:10.1103/PhysRevLett.113.150403

    Article  ADS  Google Scholar 

  18. Tanimura, Y., Kubo, R.: Time evolution of a quantum system in contact with a nearly Gaussian–Markoffian noise bath. J. Phys. Soc. Jpn. 58(1), 101–114 (1989). doi:10.1143/JPSJ.58.101

    Article  ADS  MathSciNet  Google Scholar 

  19. Tanimura, Y.: Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath. Phys. Rev. A 41, 6676–6687 (1990). doi:10.1103/PhysRevA.41.6676

    Article  ADS  MathSciNet  Google Scholar 

  20. Tanimura, Y.: Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation Approaches to Quantum Dissipative Systems. J. Phys. Soc. Jpn. 15(8), 082001 (2006). doi:10.1143/JPSJ.75.082001

    Article  ADS  Google Scholar 

  21. Hughes, K.H., et al.: Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene-fullerene heterojunction. Chem. Phys. 442, 111–118 (2014). doi:10.1016/j.chemphys.2014.06.015

    Article  ADS  Google Scholar 

  22. Cahill, K.E., Glauber, R.J.: Density operators for fermions. Phys. Rev. A 59(2), 1538–1555 (1999). doi:10.1103/PhysRevA.59.1538

    Article  ADS  Google Scholar 

  23. Combescure, M., Robert, D.: Fermionic coherent states. J. Phys. A 45(24), 244005 (2012). doi:10.1088/1751-8113/45/24/244005

    Article  ADS  MathSciNet  Google Scholar 

  24. Yu, T.: Non-Markovian quantum trajectories versus master equations: finite-temperature heat bath. Phys. Rev. A 39(6), 062107 (2004). doi:10.1103/PhysRevA.69.062107

    Article  ADS  Google Scholar 

  25. Ritschel, G., et al.: Non-Markovian quantum state diffusion for temperature-dependent linear spectra of light harvesting aggregates. J. Chem. Phys. 142(3), 034115 (2015). doi:10.1063/1.4905327

    Article  ADS  Google Scholar 

  26. Ritschel, G., Eisfeld, A.: Analytic representations of bath correlation functions for ohmic and superohmic spectral densities using simple poles. J. Chem. Phys. 141(9), 094101 (2014). doi:10.1063/1.4893931

    Article  ADS  Google Scholar 

  27. Garg, A., Onuchic, J.N., Ambegaokar, V.: Effect of friction on electron transfer in biomolecules. J. Chem. Phys. 83(9), 4491–4503 (1985). doi:10.1063/1.449017

    Article  ADS  Google Scholar 

  28. Hughes, K.H., Christ, C.D., Burghardt, I.: Effective-mode representation of non-Markovian dynamics: a hierarchical approximation of the spectral density. I. Application to single surface dynamics. J. Chem. Physics 131(2), 024109 (2009). doi:10.1063/1.3159671

    Article  ADS  Google Scholar 

  29. Huh, J., et al.: Linear-algebraic bath transformation for simulating complex open quantum systems. New J. Phys. 16(12), 123008 (2014). doi:10.1088/1367-2630/16/12/123008

    Article  ADS  Google Scholar 

  30. Mahan, G.D.: Many-Particle Physics. Springer Science & Business Media, Berlin (2000)

    Book  Google Scholar 

  31. Ozaki, T.: Continued fraction representation of the Fermi–Dirac function for large-scale electronic structure calculations. Phys. Rev. B 75(3), 035123 (2007). doi:10.1103/PhysRevB.75.035123

    Article  ADS  Google Scholar 

  32. Hu, J., Xu, R.-X., Yan, Y.: Communication: Padé spectrum decomposition of Fermi function and Bose function. J. Chem. Phys. 133(10), 10110 (2010). doi:10.1063/1.3484491

    Article  Google Scholar 

  33. İmamoğlu, A.: Stochastic wave-function approach to non-Markovian systems. Phys. Rev. A 50(5), 3650–3653 (1994). doi:10.1103/PhysRevA.50.3650

    Article  Google Scholar 

  34. Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55(3), 2290–2303 (1997). doi:10.1103/PhysRevA.55

    Article  ADS  MathSciNet  Google Scholar 

  35. Roden, J., Strunz, W.T., Eisfeld, A.: Non-Markovian quantum state diffusion for absorption spectra of molecular aggregates. J. Chem. Phys. 134(3), 034902 (2011). doi:10.1063/1.3512979

    Article  ADS  Google Scholar 

  36. Garcia-Ojalvo, J., Sancho, J.: Noise in Spatially Extended Systems. Springer, New York (1999)

    Book  MATH  Google Scholar 

  37. Ma, J., Sun, Z., Wang, X., Nori, F.: Entanglement dynamics of two qubits in a common bath. Phys. Rev. A 85, 062323 (2012). doi:10.1103/PhysRevA.85.062323

    Article  ADS  Google Scholar 

  38. Jin, J., et al.: Dynamics of quantum dissipation systems interacting with fermion and boson grand canonical bath ensembles: hierarchical equations of motion approach. J. Chem. Phys. 126, 134113 (2007). doi:10.1063/1.2713104

    Article  ADS  Google Scholar 

  39. Leggett, A.J., et al.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59(1), 1–85 (1987). doi:10.1103/RevModPhys.59.1

    Article  ADS  Google Scholar 

  40. Prokof’ev, N.V., Stamp, P.C.E.: Theory of the spin bath. Rep. Prog. Phys. 63(4), 669 (2000). doi:10.1088/0034-4885/63/4/204

    Article  ADS  Google Scholar 

Download references

Acknowledgments

DS acknowledges support by the Excellence Initiative of the German Federal and State Governments (Grant ZUK 43), the ARO under contracts W911NF-14- 1-0098 and W911NF-14-1-0133 (Quantum Characterization, Verification, and Validation), and the DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Suess.

Appendices

Appendix 1: Derivation of the Fermionic Hierarchy of Pure States

The derivation for the fermionic hierarchy of pure states is very similar to that of the bosonic one discussed in [17]. To have a compact notation, we ignore the condition \(k_j \in \{0,1\}\) for our derivation. In the end, it will turn out that these conditions are trivially incorporated due to the structure of the hierarchy.

We start by taking the time derivative of \( \psi _t^{(\mathbf {k})} \). Using its definition (13) we find

$$\begin{aligned} \partial _t \psi _t^{(\mathbf {k})}= & {} ( \partial _t \mathbf {D}_{t}^{\mathbf {k}} ) \psi _t + \mathbf {D}_{t}^{\mathbf {k}} (\partial _t \psi _t ) \end{aligned}$$
(37)

For the first term on the right hand side we useFootnote 4 \( (\partial _t D_{j,t} ) \psi _t = - w_j D_{j,t} \psi _t \) due to the exponential BCF (16). For the second term on the right hand side we use that all system operators commute with all \( D_{j,t} \) and obtain

$$\begin{aligned} \partial _t \psi _t^{(\mathbf {k})}= & {} - \mathbf {k}\cdot \mathbf {w}\, \psi _t^{(\mathbf {k})} \nonumber \\&- \mathrm {i}H \psi _t^{(\mathbf {k})} + \underbrace{\sum _j L_j \mathbf {D}_{t}^{\mathbf {k}} {Z}^*_j(t) \psi _t }_{(*)} - \underbrace{\sum _j {L}^\dagger _j \mathbf {D}_{t}^{\mathbf {k}} D_{j,t} \psi _t }_{(**)} \end{aligned}$$
(38)

To obtain a closed equation for the auxiliary states, we want the \( D_{j,t} \) ordered as in the definition (13). In \((**)\) we have to move \( D_{j,t} \) to the correct position (note the ordering in (13)):

$$\begin{aligned} \mathbf {D}_{t}^{\mathbf {k}} D_{j,t}= & {} (-1)^{k_N} D_{1,t} ^{k_1} \ldots D_{j,t} D_{N,t} ^{k_N} \nonumber \\= & {} (-1)^{k_{j+1} + \cdots + k_N} D_{1,t} ^{k_1} \ldots D_{j,t} ^{k_j + 1} \cdots D_{N,t} ^{k_N}. \end{aligned}$$
(39)

In \((*)\) we have to bring \({Z}^*_j(t)\) in front of \(\mathbf {D}_{t}^{\mathbf {k}}\). This can be achieved by noting that \( \{ D_{j,t} , {Z}^*_{j'}(s) \} = \delta _{jj'} \, \alpha _{j}(t_{j}-s) \). We then find

$$\begin{aligned} \mathbf {D}_{t}^{\mathbf {k}} {Z}^*_j(t)= & {} (-1)^{k_N} D_{1,t} ^{k_1} \ldots {Z}^*_j(t) D_{N,t} ^{k_N} \nonumber \\= & {} (-1)^{k_{j+1} + \cdots + k_N} D_{1,t} \ldots D_{j,t} ^{k_j} {Z}^*_j(t) \ldots \nonumber \\= & {} (-1)^{{\left| \mathbf {k} \right| }_j} D_{1,t} \ldots \left( - D_{j,t} ^{k_j-1} {Z}^*_j(t) D_{j,t} + D_{j,t} ^{k_j-1} p_j \right) \ldots \nonumber \\= & {} \ldots \left( D_{j,t} ^{k_j-2} {Z}^*_j(t) D_{j,t} ^2 - D_{j,t} ^{k_j-1} p_j + D_{j,t} ^{k_j-1} p_j \right) \ldots \nonumber \\= & {} \ldots \left( (-1)^{k_j} {Z}^*_j(t) D_{j,t} ^{k_j} + (k_j \,\mathrm{mod\, 2}) p_j D_{j,t} ^{k_j-1} \right) \ldots \nonumber \\= & {} (-1)^{\left| \mathbf {k} \right| } {Z}^*_j(t) \mathbf {D}_{t}^{\mathbf {k}} + (-1)^{{\left| \mathbf {k} \right| }_j} (k_j \,\mathrm{mod\, 2}) p_j \mathbf {D}_{t}^{\mathbf {k}- \mathbf {e}_j}, \end{aligned}$$
(40)

where \({\left| \mathbf {k} \right| }\) and \({\left| \mathbf {k} \right| }_j\) have been defined below Eq. (17).

Combining (39) and (40) leads to the (apparently) infinite hierarchy of pure states for fermionic environment

$$\begin{aligned} \partial _t \psi _t^{(\mathbf {k})}= & {} \left( -\mathrm {i}H - \mathbf {k}\cdot \mathbf {w}+ (-1)^{\left| \mathbf {k} \right| } \sum _j {Z}^*_j(t) L_j \right) \psi _t^{(\mathbf {k})} \nonumber \\&+ \sum _j (-1)^{{\left| \mathbf {k} \right| }_j} (k_j\, \mathrm{mod\, 2}) p_j L_j \psi _t^{(\mathbf {k}- \mathbf {e}_j)} \nonumber \\&- \sum _j (-1)^{{\left| \mathbf {k} \right| }_j} (-1)^{{\left| \mathbf {k} \right| }_j} {L}^\dagger _j \psi _t^{(\mathbf {k}+ \mathbf {e}_j)} . \end{aligned}$$
(41)

Note that all states with some \(k_j \notin \{0,1\}\)—which should be zero actually—only couple to other states also satisfying this condition: Due to the modulo function in the term coupling to states “below” in the hierarchy, states with some \(k_j \notin \{0,1\}\) that are initially zero always remain zero. Therefore, the closed and finite hierarchy with all \(k_j \in \{0,1\}\) and equation (41) can be written as (17).

Appendix 2: Derivation of Master Equation Hierarchy

In this appendix we provide the Novikov theorem, which is essential to get from Eqs. (21) to  (22). The Novikov theorem allows us to get rid of the explicit dependence of the Grassmann processes in the second and third line of (21) by a “partial integration”. For the fermionic case the Novikov theorem has been discussed in [15] (see Eqs. (22) and (23) therein). We need two variants of the Novikov theorem:

$$\begin{aligned} \mathbb {E}\left( | \psi _t^{(\mathbf {m})} \rangle \langle \tilde{\psi }_t^{(\mathbf {n})} | Z_j(t) \right)= & {} - \mathbb {E} \Bigg ( \int \mathrm {d}s \, \alpha _j(t-s) \frac{\overrightarrow{\delta }}{\delta {Z}^*_j(s)} | \psi _t^{(\mathbf {m})} \rangle \langle \tilde{\psi }_t^{(\mathbf {n})} | \Bigg ) \nonumber \\= & {} - \rho _t^{(\mathbf {m}+\mathbf {e}_j,\mathbf {n})} \end{aligned}$$
(42)

and

$$\begin{aligned} \mathbb {E}\left( {Z}^*_j(t) | \psi _t^{(\mathbf {m})} \rangle \langle \tilde{\psi }_t^{(\mathbf {n})} | \right)= & {} - \mathbb {E} \Bigg ( \int \mathrm {d}s \, {\alpha _j(t-s)}^* \left| \psi _t^{(\mathbf {m})} \rangle \langle \tilde{\psi }_t^{(\mathbf {n})} \right| \frac{\overleftarrow{\delta }}{\delta Z_j(s)} \Bigg ) \nonumber \\= & {} \rho _t^{(\mathbf {m},\mathbf {n}+\mathbf {e}_j)}, \end{aligned}$$
(43)

where in the second line of each equation we have used the definition of the auxiliary matrices (20) and the definitions (12) and (13). In the second equation the right-functional derivative appears and we have used

$$\begin{aligned} \frac{\overrightarrow{\delta } \tilde{\psi }_t ({Z}^*)}{\delta {Z}^*_j(s)} = \frac{\overrightarrow{\delta } \psi _t (-{Z}^*)}{\delta {Z}^*_j(s)} = - \left. \frac{\overrightarrow{\delta } \psi _t ({Z'}^*)}{\delta {Z_j'}^*(s)} \right| _{{Z'}^* = -{Z}^*}. \end{aligned}$$
(44)

These two equations (42) and (43) show that it is possible to express the averages in the second and third line of (21) containing the noise process explicitly by the auxiliary density operators.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suess, D., Strunz, W.T. & Eisfeld, A. Hierarchical Equations for Open System Dynamics in Fermionic and Bosonic Environments. J Stat Phys 159, 1408–1423 (2015). https://doi.org/10.1007/s10955-015-1236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1236-7

Keywords

Navigation