Skip to main content
Log in

Global Existence of Classical Solutions to the Inelastic Vlasov–Poisson–Boltzmann System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the global existence and uniqueness of classical solutions to the inelastic Vlasov–Poisson–Boltzmann system for a soft potential in the near vacuum regime. For the global existence of classical solutions, we assume reasonable conditions on the restitution coefficient, which represents the character of inelastic collisions. We use the smallness of initial data and an algebraically decaying weight function in the spatial variable to control the self-consistence force and collision operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, R.J.: Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near vacuum data. Indiana Univ. Math. J. 58, 999–1022 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alonso, R.J., Lods, B.: Boltzmann model for viscoelastic particles: asymptotic behavior, pointwise lower bounds and regularity. Commun. Math. Phys. (2014). doi:10.1007/s00220-014-2089-7

  3. Asano, K.: Local solutions to the initial and initial-boundary value problem for the Boltzmann equation with an external force. J. Math. Kyoto Univ. 24, 225–238 (1984)

    MATH  MathSciNet  Google Scholar 

  4. Bardos, C., Degond, P.: Global existence for the Vlasov–Poisson equation in three space variables with small initial data. Ann. Inst. Henri Póincare C 2, 101–118 (1985)

    MATH  MathSciNet  Google Scholar 

  5. Bellomo, N., Toscani, G.: On the Cauchy problem for the nonlinear Boltzmann equation: global existence, uniqueness and asymptotic stability. J. Math. Phys. 26, 334–338 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model. J. Stat. Phys. 124, 625–653 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 110, 333–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bobylev, A.V., Cercignani, C., Toscani, G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys. 111, 403–417 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bobylev, A.V., Gamba, I.M., Panferov, V.A.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116, 1651–1682 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Duan, R., Yang, T., Zhu, C.: Boltzmann equation with external force and Vlasov–Poisson–Boltzmann system in infinite vacuum. Discret. Contin. Dyn. Syst. 16, 253–277 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Duan, R., Yang, T., Zhu, C.: Global existence to Boltzmann equation with external force in infinite vacuum. J. Math. Phys. 46, 053307 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. Duan, R., Yang, T., Zhu, C.: \(L^1\) and BV-type stability of the Boltzmann equation with external forces. J. Differ. Equ. 227, 1–28 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Ernst, M.H., Trizac, E., Barrat, A.: The Boltzmann equation for driven systems of inelastic soft spheres. J. Stat. Phys. 124(2–4), 549–586 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Gamba, I.M., Panferov, V., Villani, C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246, 503–541 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Guo, Y.: The Vlasov–Poisson–Boltzmann system near vacuum. Commun. Math. Phys. 218, 293–313 (2001)

    Article  ADS  MATH  Google Scholar 

  17. Hamdache, K.: Existence in the large and asymptotic behaviour for the Boltzmann equation. Jpn. J. Appl. Math. 2(1), 1–15 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Illner, R., Shinbrot, M.: The Boltzmann equation: global existence for a rare gas in an infinite vacuum. Commun. Math. Phys. 95(2), 217–226 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Kaniel, S., Shinbrot, M.: The Boltzmann equation. I. Uniqueness and local existence. Commun. Math. Phys. 58(1), 65–84 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Mischler, S.: On the initial boundary value problem for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 210(2), 447–466 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Mischler, S., Mouhot, C., Rodriguez Ricard, M.: Cooling process for inelastic Boltzmann equations for hard spheres. I. The Cauchy problem. J. Stat. Phys. 124(2–4), 655–702 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Polewczak, J.: Classical solution of the nonlinear Boltzmann equation in all \(R^3\): asymptotic behavior of solutions. J. Stat. Phys. 50, 611–632 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Rein, G.: Collisionless kinetic equations from astrophysics:the Vlasov–Poisson system. In: Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 383–476. Elsevier, Amsterdam (2007)

  24. Toscani, G.: On the nonlinear Boltzmann equation in unbounded domains. Arch. Rational Mech. Anal. 95, 37–49 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Wei, J., Zhang, X.: On the Cauchy problem for the inelastic Boltzmann equation with external force. J. Stat. Phys. 146, 592–609 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of S.-Y. Ha is partially supported by NRF-2009-0083521(SRC) and the work of S.-H. Choi is supported by BK21 Plus-KAIST. Authors also would like to thank anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Ho Choi.

Appendix: Proof of the Second Half of Lemma 4.2

Appendix: Proof of the Second Half of Lemma 4.2

In the appendix, we estimate the term \(N_1(f,g)\) in Lemma 4.2.

Recall that

$$\begin{aligned} N_1(f,g) := -\int \limits _0^t\int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2}\frac{q(u,\omega )}{ ^{\prime } e^{\gamma } \cdot { ^{\prime } J} }f(X(s),V(s)-U_{\parallel },s)g(X(s),V(s)-U_{\perp },s)dud\omega ds. \end{aligned}$$

To estimate \(N_1(f,g)\), we divide it into its small time part and large time part. That is,

$$\begin{aligned} |N_1(f,g)(t,x,v)|&\le \bigg |\int \limits _0^1\int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2}[\cdots ]dud\omega ds\bigg |+\bigg |\int \limits _1^t\int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2}[\cdots ]dud\omega ds\bigg |\\&\equiv N_{11}(f,g)+N_{12}(f,g). \end{aligned}$$

(Estimate of \(N_{11}(f,g)\)): Similar to the estimate for \(N_{21}(f,g)\) in Lemma 4.1, we have

$$\begin{aligned} |N_{11}(f,g)| \le C\sup _s||f(s)||\sup _s ||g(s)||. \end{aligned}$$

(Estimate of \(N_{12}(f,g)\)): In this case, we use assumptions \(({\mathcal A}1)\)\(({\mathcal A}3)\) and the properties of \(U_{\parallel }\), \(U_{\perp }\), and \( ^{\prime } e\). Similar to the estimate given for the loss term, we have

$$\begin{aligned} |N_{12}(f,g)|&\le \int \limits _1^t ||f(s)||\cdot ||g(s)||\int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2} \frac{q(u,\omega )}{ ^{\prime } e^{\gamma } \cdot { ^{\prime } J} }(1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} \\&\quad \times e^{-\alpha |V_{\parallel }(0)|^2-\alpha |V_{\perp }(0)|^2} dud\omega ds\\&\le \sup _s||f(s)||\sup _s||g(s)|| \int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2} \frac{q(u,\omega )}{ ^{\prime } e^{\gamma } \cdot { ^{\prime } J}}(1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} \\&\quad \times e^{-\alpha |V_{\parallel }(0)|^2-\alpha |V_{\perp }(0)|^2} dud\omega ds. \end{aligned}$$

It follows from Lemma 2.7 that

$$\begin{aligned} |N_{12}(f,g)|&\le \sup _s||f(s)||\sup _s||g(s)|| \int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2}\frac{q(u,\omega )}{ ^{\prime } e^{\gamma } \cdot { ^{\prime } J}}(1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} \\&\quad \times e^{-\alpha (|V(0)|^2+|V(s)-u|^2+\frac{1-e^2}{2}|{ ^{\prime } u}\cdot \omega |^2)} dud\omega ds\\&\le \sup _s||f(s)||\sup _s||g(s)|| e^{-\alpha |V(0)|^2} \int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2} \frac{q(u,\omega )}{ ^{\prime } e^{\gamma }\cdot { ^{\prime } J}}e^{-\alpha \frac{1-e^2}{2}|{ ^{\prime } u}\cdot \omega |^2} \\&\quad \times (1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} e^{-\alpha |V(s)-u|^2} du d\omega ds . \end{aligned}$$

Since the collision kernel \(q\) satisfies (2.3) and \(e\) satisfies \(({\mathcal A}3)\) in Sect. 2.1, we obtain the following estimate for the collision potential term in the above integrand:

$$\begin{aligned}&\Big |\frac{q(u,\omega )}{ ^{\prime } e^{\gamma }\cdot { ^{\prime } J}}e^{-\alpha \frac{1-e^2}{2}|{ ^{\prime } u}\cdot \omega |^2}\Big | \\&\le C(1+|u|^{\gamma })\Big |\frac{1}{ ^{\prime } e^{\gamma } \cdot { ^{\prime } J}}e^{-\alpha \frac{1-e^2}{2}|{ ^{\prime } u}\cdot \omega |^2}\Big |\\&\le C\Big (||\psi _{\alpha /2,\gamma }||_{L^{\infty }}+\frac{|u|^{\gamma }}{ ^{\prime } e^{\gamma } \cdot { ^{\prime } J}}\Big )\\&\equiv q_1+q_2(u). \end{aligned}$$

We use the change of variable \(\bar{u}=s u\) to calculate

$$\begin{aligned}&\int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2}\big [q_1+q_2(u)\big ] (1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} e^{-\alpha |V(s)-u|^2} du d\omega ds \\&\quad =\int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2} \big [q_1+q_2(\bar{u}/s)\big ] (1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} e^{-\alpha |V(s)-\bar{u}/s|^2} \frac{d\bar{u}}{s^3} d\omega ds\\&\quad \le \int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2} \big [q_1+q_2(\bar{u}/s)\big ] (1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} \frac{d\bar{u}}{s^3} d\omega ds \\&\quad \equiv \Lambda (t). \end{aligned}$$

We claim that there exists a constant \(C>0\) such that

$$\begin{aligned} \Lambda (t) \le C(1+|X(0)|^2)^{-k},\quad \text{ for } k>3/2\text{. } \end{aligned}$$

It follows from Lemma 2.6 that

$$\begin{aligned} \text{ either } \quad |X_{\parallel }(0)|^2 \ge \frac{|X(0)|^2}{4} \quad \text{ or } \quad |X_{\perp }(0)|^2 \ge \frac{|X(0)|^2}{4}. \end{aligned}$$

Case A \((|X_{\perp }(0)|^2\ge \frac{|X(0)|^2}{4})\): We decompose \(\bar{u}\) as

$$\begin{aligned} \bar{u}=(\bar{u}\cdot \omega )\omega + (\bar{u}-(\bar{u}\cdot \omega )\omega ) \equiv \bar{u}_{\parallel }+\bar{u}_{\perp }. \end{aligned}$$
(7.1)

In (7.1), we consider \(\bar{u}_{\parallel }\) as a three-dimensional variable with \(|\bar{u}\cdot \omega |=|\bar{u}_{\parallel }|\) and \(\bar{u}_{\parallel }=|\bar{u}_{\parallel }|\omega \). Since \({\mathbb {R}}^3\times {\mathbb {S}}^2\) is a five-dimensional surface, we use the following change of variable:

$$\begin{aligned} d\bar{u}d\omega =d\bar{u}_{\perp } d(\bar{u}\cdot \omega ) d\omega =\frac{1}{|\bar{u}_{\parallel }|^2}d\bar{u}_{\perp } d\bar{u}_{\parallel }. \end{aligned}$$

For simplicity, we define the following notation:

$$\begin{aligned} \bar{U}_{\parallel }=\frac{U_{\parallel }}{s}=\frac{1+ ^{\prime } e}{2 ^{\prime } e}\bar{u}_{\parallel },\quad \bar{U}_{\perp }=\frac{U_{\perp }}{s}=\frac{1+ ^{\prime } e}{2 ^{\prime } e}\bar{u}_{\perp } -\frac{1- ^{\prime } e}{2 ^{\prime } e}\bar{u}=\bar{u}_{\perp } -\frac{1- ^{\prime } e}{2 ^{\prime } e}\bar{u}_{\parallel }. \end{aligned}$$

By definition, we have

$$\begin{aligned}e=e(u\cdot \omega ), \quad ^{\prime } e=e({ ^{\prime } u}\cdot \omega ), \quad u\cdot \omega =-({ ^{\prime } u}\cdot \omega ) e({ ^{\prime } u}\cdot \omega ),\end{aligned}$$

which implies

$$\begin{aligned} u\cdot \omega =-\theta ({ ^{\prime } u}\cdot \omega ) \quad \text{ with } \quad \theta (z)=z e(z). \end{aligned}$$

Thus, we have the following relation:

$$\begin{aligned} ^{\prime } e=e({ ^{\prime } u}\cdot \omega )=\frac{u\cdot \omega }{\theta ^{-1}(u\cdot \omega )}=\frac{\bar{u}\cdot \omega /s}{\theta ^{-1}(\bar{u}\cdot \omega /s)}. \end{aligned}$$

This relation implies

$$\begin{aligned} \theta ^{-1}(|u_{\parallel }|)=\theta ^{-1}(u\cdot \omega )=\frac{u\cdot \omega }{ ^{\prime } e}=\frac{|u_{\parallel }|}{ ^{\prime } e}. \end{aligned}$$

Since \(\bar{U}_{\parallel }\) depends on \(u_{\parallel }\) , we can calculate the Jacobian \(J_{U}\) using the inverse function theorem as follow:

$$\begin{aligned} J_{U}&= det \frac{\partial ( \bar{U}_{\perp },| \bar{U}_{\parallel }|,\omega )}{\partial (\bar{u}_{\perp }, |\bar{u}_{\parallel }|,\omega )}=\frac{d |\bar{U}_{\parallel }|}{d |\bar{u}_{\parallel }|}=\frac{d}{d |\bar{u}_{\parallel }|} (\frac{1+ ^{\prime } e}{2 ^{\prime } e}|\bar{u}_{\parallel }|)=\frac{1}{2}\frac{d}{d |\bar{u}_{\parallel }|} (\frac{|\bar{u}_{\parallel }|}{ ^{\prime } e})+\frac{1}{2}\nonumber \\&= \frac{1}{2}\frac{d}{d |u_{\parallel }|} (\frac{|u_{\parallel }|}{ ^{\prime } e})+\frac{1}{2}= \frac{1}{2\theta _z(|{ ^{\prime } u}\cdot \omega |)}+\frac{1}{2}. \end{aligned}$$
(7.2)

By assumption \(({\mathcal A}2)\) of \(e=e(z)\) and the above calculation, we arrive at the following lower bound for \(J_U\):

$$\begin{aligned} \frac{1}{2}<det \frac{\partial ( \bar{U}_{\perp },| \bar{U}_{\parallel }|,\omega )}{\partial (\bar{u}_{\perp }, |\bar{u}_{\parallel }|,\omega )}=J_U. \end{aligned}$$
(7.3)

From \(J_U\), we have the following relation:

$$\begin{aligned} d\bar{u}d\omega =d\bar{u}_{\perp } d(\bar{u}\cdot \omega ) d\omega =\frac{1}{J_{U}}d\bar{U}_{\perp } d(\bar{U}\cdot \omega ) d\omega =\frac{1}{J_{U}|\bar{U}_{\parallel }|^2}d\bar{U}_{\perp } d\bar{U}_{\parallel }. \end{aligned}$$

Using repeated integrals over \(\bar{U}_{\perp }\) and \(\bar{U}_{\parallel }\), we estimate \(\Lambda (t)\). Specifically,

$$\begin{aligned} \Lambda (t)&= \int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2} \big [q_1+q_2(\bar{u}/s)\big ] (1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} \frac{d\bar{u}}{s^3} d\omega ds\\&= \int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {R}}^2} (1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} \frac{\big [q_1+q_2(\bar{u}/s)\big ]}{s^3 J_{U}}d\bar{U}_{\perp } \frac{d\bar{U}_{\parallel }}{|\bar{U}_{\parallel }|^2} ds. \end{aligned}$$

For \(\gamma \le 0\), it follows from (7.3) and Lemma 2.5 that

$$\begin{aligned} \frac{\big [q_{1}+q_{2}(\bar{u}/s)\big ]}{{s^{3}} {J_{U}}}&= C\Big (||\psi ||_{L^{\infty }}+\frac{|u|^{\gamma }}{{}^{\prime } e^{\gamma } \cdot {{}^{\prime }J}}\Big )\frac{1}{{s^{3}} {J_{U}}} = \frac{C||\psi ||_{L^{\infty }}}{{s^{3}} {J_{U}}} +C\frac{|u|^{\gamma }}{{}^{\prime } e^{\gamma } \cdot {{}^{\prime } J}}\frac{1}{{s^{3}}{J_{U}}}\\&\le \frac{C||\psi ||_{L^{\infty }}}{s^{3}} +C\Big (\frac{{}^{\prime }e|{\bar{U}_{\perp }}|}{s}\Big )^{\gamma }\frac{1}{s^{3}{}^{\prime }e^{\gamma } \cdot {{}^{\prime }J}{J_{U}}}. \end{aligned}$$

It follows from (7.2) and the definition of \(\theta (z)\) in Lemma 2.1(ii) that

$$\begin{aligned} \frac{\big [q_1+q_2(\bar{u}/s)\big ]}{s^3 J_{U}}&\le \frac{C||\psi ||_{L^{\infty }}}{s^3} +C\Big (\frac{{}^{\prime } e|\bar{U}_{\perp }|}{s}\Big )^{\gamma }\frac{1}{s^3 {}^{\prime } e^{\gamma } \cdot { {}^{\prime } J} }\frac{2\theta _z(|{ {}^{\prime } u}\cdot \omega |)}{1+\theta _z(|{ {}^{\prime } u}\cdot \omega |)}\\&= \frac{C||\psi ||_{L^{\infty }}}{s^3 } +C\frac{2|\bar{U}_{\perp }|^{\gamma }}{s^{3+\gamma } [1+\theta _z(|{ {}^{\prime } u}\cdot \omega |)] } . \end{aligned}$$

Finally, assumption \((\mathcal A 2)\) and \(s>1\) lead to

$$\begin{aligned} \frac{\big [q_1+q_2(\bar{u}/s)\big ]}{{s^{3}} {J_{U}}}&\le \frac{C||\psi ||_{L^{\infty }}}{s^3 } +C\frac{|\bar{U}_{\perp }|^{\gamma }}{s^{3+\gamma } } \le \frac{C}{s^{3+\gamma }}(1 +|\bar{U}_{\perp }|^{\gamma } ). \end{aligned}$$
(7.4)

From the upper bound of the collision potential in (7.4) and the Jacobian, we have

$$\begin{aligned} \Lambda (t)\le \int \limits _1^t \int \limits _{{\mathbb {R}}^3\times {\mathbb {S}}^2} \frac{C}{s^{3+\gamma }}(1 +|\bar{U}_{\perp }|^{\gamma } ) (1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} d\bar{U}_{\perp } \frac{d\bar{U}_{\parallel }}{|\bar{U}_{\parallel }|^2} ds. \end{aligned}$$

Thus, it suffices to prove that the following integral is uniformly bounded with respect to a large time region \(t>1\):

$$\begin{aligned} \int \limits _{{\mathbb {R}}^3\times {\mathbb {R}}^2} (1 +|\bar{U}_{\perp }|^{\gamma } ) (1+|X_{\parallel }(0)|^2)^{-k}(1+|X_{\perp }(0)|^2)^{-k} d\bar{U}_{\perp } \frac{d\bar{U}_{\parallel }}{|\bar{U}_{\parallel }|^2}, \end{aligned}$$

where \(X_{\perp }(0)\) and \(X_{\parallel }(0)\) depend only on \(\bar{U}_{\perp }\) and \(\bar{U}_{\parallel }\), respectively.

It follows from Lemma 2.3 that

$$\begin{aligned} X_{\perp }(0)-X(0)=X(0;s,X(s),V(s)-U_{\perp })-X(0)=[I+ {\mathcal O}(\varepsilon _0)]\bar{U}_{\perp }. \end{aligned}$$

Thus, we again use a change of variable, in this case \(\bar{U}_{\perp }= X_{\perp }(0)\), to calculate the two-dimensional integral:

$$\begin{aligned} \int \limits _{{\mathbb {R}}^2} (1\!+\!|\bar{U}_{\perp }|^{\gamma })(1\!+\!|X_{\perp }(0)|^2)^{-k}d\bar{U}_{\perp } \!\le \! C \int \limits _{{\mathbb {R}}^2} (1\!+\!|X(0)-X_{\perp }(0)|^{\gamma })(1\!+\!|X_{\perp }(0)|^2)^{-k}dX_{\perp }. \end{aligned}$$

Because of the assumption in this case, i.e., \(|X_{\perp }(0)|^2\ge |X(0)|^2/4\), the above integral is bounded by

$$\begin{aligned}&C \int \limits _{{\mathbb {R}}^2\cap \{|X_{\perp }(0)|\ge |X(0)|/4\}} (1+|X(0)-X_{\perp }(0)|^{\gamma })(1+|X_{\perp }(0)|^2)^{-k}dX_{\perp }\\& \le C \bigg \{\int \limits _{|X_{\perp }(0)-X(0)|\le (|X(0)|+1)/2}+\int \limits _{|X_{\perp }(0)-X(0)|>(|X(0)|+1)/2}\bigg \} ~[\cdots ]~ dX_{\perp } \\& \equiv I_1+I_2. \end{aligned}$$

The assumption that \(|X_{\perp }(0)|^2\ge |X(0)|^2/4\) leads to \((1+|X_{\perp }(0)|^{-k})\le C(1+|X(0)|^2)^{-k}\), which, in turn, implies

$$\begin{aligned} |I_1|\le C\frac{(|X(0)|+1)^2+(|X(0)|+1)^{\gamma +2}}{(1+|X(0)|^2)^{k}} \end{aligned}$$

and

$$\begin{aligned} |I_2|\le C(1+(|X(0)|+1)^{\gamma })(1+|X(0)|^2)^{1-k}. \end{aligned}$$

Thus, we arrive at the following estimate for the two-dimensional integral:

$$\begin{aligned} \int \limits _{{\mathbb {R}}^2} (1+|\bar{u}|^{\gamma })(1+|X_{\perp }(0)|^2)^{-k}d\bar{U}_{\perp }\le C(1+|X(0)|^2)^{1-k}. \end{aligned}$$

For the three-dimensional integral with respect to \(\bar{U}_{\parallel }\), we use the same method as above. Then it follows from Lemma 2.3 that we have

$$\begin{aligned} X_{\parallel }(0)-X(0)=X(0;s,X(s),V(s)-U_{\parallel })-X(0)=[I+O(\epsilon _0)]\bar{U}_{\parallel }. \end{aligned}$$

It follows from Lemma 2.9 that

$$\begin{aligned} \int \limits _{{\mathbb {R}}^3} (1+|X_{\parallel }(0)|^2)^{-k}\frac{1}{|\bar{U}_{\parallel }|^2}d\bar{U}_{\parallel }&\le C\int \limits _{{\mathbb {R}}^3} (1+|X_{\parallel }(0)|^2)^{-k}\frac{1}{|X(0)-X_{\parallel }(0)|^2}dX_{\parallel }(0)\\&\le C(1+|X(0)|)^{-2}. \end{aligned}$$

This completes Case A.

Case B \((|X_{\parallel }(0)|^2\ge |X(0)|^2/4)\): In this case, we use the following decomposition of \(\bar{u}\):

$$\begin{aligned} \bar{u}&= (\bar{u}\cdot \omega )\omega + (\bar{u}-(\bar{u}\cdot \omega )\omega )=\bar{u}-|\bar{u}-(\bar{u}\cdot \omega )\omega |\eta + |\bar{u}-(\bar{u}\cdot \omega )\omega |\eta \\&= (u-|\bar{u}_{\perp }|\eta )+|\bar{u}_{\perp }|\eta \equiv \bar{u}_{\parallel }+\bar{u}_{\perp }. \end{aligned}$$

In other words, we consider \(\bar{u}_{\perp }\) as a three-dimensional variable, which makes \(\bar{u}_{\parallel }\) a two-dimensional variable. The independent variables of \(\bar{u}_{\parallel }\) are \(|\bar{u}_{\parallel }|\) and \(\zeta \), where \(\zeta \) is the angle between \(\bar{u}\) and the plate generated by vector \(\eta \). Note that \(u_{\perp }\) and \(u_{\parallel }\) are orthogonal. Therefore, the Jacobian is calculated as before as follows:

$$\begin{aligned} det \frac{\partial ( \bar{U}_{\perp },| \bar{U}_{\parallel }|,\zeta )}{\partial (\bar{u}_{\perp }, |\bar{u}_{\parallel }|,\zeta )}=\frac{d |\bar{U}_{\parallel }|}{d |\bar{u}_{\parallel }|}=\frac{d}{d |\bar{u}_{\parallel }|} (\frac{1+ ^{\prime } e}{2 ^{\prime } e}|\bar{u}_{\parallel }|)&= \frac{1}{2}\frac{d}{d |\bar{u}_{\parallel }|} (\frac{|\bar{u}_{\parallel }|}{ ^{\prime } e})+\frac{1}{2}. \end{aligned}$$

Thus, we obtain the same result in this case using a method similar to the one used in the previous case.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, SH., Ha, SY. Global Existence of Classical Solutions to the Inelastic Vlasov–Poisson–Boltzmann System. J Stat Phys 156, 948–974 (2014). https://doi.org/10.1007/s10955-014-1041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1041-8

Keywords

Navigation