Skip to main content
Log in

Reinforced Brownian Motion: A Prototype

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze the Brownian Motion limit of a prototypical unit step reinforced random-walk on the half-line. A reinfoced random walk is one which changes the weight of any edge (or vertex) visited to increase the frequency of return visits. The generating function for the discrete case is first derived for the joint probability distribution of \(S_N\) (the location of the walker at the \(N^{th}\) step) and \(A_N\), the maximum location the walker achieved in \(N\) steps. Then the bulk of the analysis concerns the statistics of the limiting Brownian walker, and of its “environment”, both parametrized by the amplitude \(\delta \) of the reinforcement. The walker marginal distribution can be interpreted as that of free diffusion with a source serving as a diffusing soft confinement, details depending very much on the value of \(-1< \delta < \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, B.: Reinforced random walk. Probab. Theory Rel. Fields 84, 203–229 (1990)

    Article  ADS  MATH  Google Scholar 

  2. Pemantle, R.: A survey of random processes with reinforcement. Probab. Surv 4, 1–79 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Keane, M.: Reinforced random walk. Bolyai Soc. Math. Studies 16, 151–158 (2007)

    Article  MathSciNet  Google Scholar 

  4. Kozma, G.: Reinforced random walk. arXiv:1208.0364v1, 1–16 (2012)

  5. Sabot, C., Tarres, P.: Edge-reinforced random walk, arXiv:1111.3991.

  6. Angel, D., Crawford, N., Kozma, G.: Localization for edge-reinforced random walks. Duke Math. J 163, 889 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davis, B.: Brownian motion and random walk perturbed at extrema. Probab. Theory Relat. Fields 113, 501–518 (1999)

    Article  MATH  Google Scholar 

  8. Nester, D. K.: A random walk with partial reflection at its extrema. Ph.D. Thesis, Purdue University (1993)

  9. Sellke, T.: Recurrence of reinforced random walk on a ladder. Electron. J. Probab 11, 301–310 (2006)

    Article  MathSciNet  Google Scholar 

  10. Durrett, R., Kesten, H., Limic, V.: Once edge-reinforced random walk on a tree. Probab. Theory Relat. Fields 122, 567–592 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tóth, B.: Generalized Ray-Knight theory and limit theorems for self-interacting random walks on \(Z^1\). Ann. Probab 24, 1324–1367 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kac, M.: Random walk and the theory of Brownian motion, selected papers on noise and stochastic processes, Wax, N. (ed.) Dover Publications, New York (1954)

  13. Percus, O.E.: Phase transition in one-dimensional random walk with partially reflecting boundaries. Adv. Appl. Probab. 7, 594–606 (1985)

    Article  MathSciNet  Google Scholar 

  14. Percus, O.E., Percus, J.K.: The Maximum of a symmetric next neighbor walk on the non-negative integers. J. Appl. Probab. 51, 162–173 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome K. Percus.

Appendices

Appendix A. Marginal Distribution of the Maximum, Large \(b^2/t\)

It is sufficient to work directly with the Laplace Transform in time and then extract the time dependence. From (15) we have

$$\begin{aligned} \hat{Q}_\delta (s,b)&\equiv \int ^b_0 Q(s,y,b) \,dy = \frac{2(1+\delta )}{\sqrt{2s}} \frac{\sinh b\sqrt{2s}}{\left(\cosh b\sqrt{2s}\right)^{2+\delta }}\\&= -\frac{2}{b} \frac{\partial }{\partial s} \left(\cosh b \sqrt{2s}\right)^{ -(1+\delta )} \ . \nonumber \end{aligned}$$
(43)

Therefore

$$\begin{aligned} Q_\delta (t,b)&= \frac{2t}{b}\; \mathcal {L}^{-1}_{t,s} \left(\cosh b\sqrt{2s}\right)^{-(1+ \delta )} \ . \end{aligned}$$

It is “only” the technical issue of carrying out the inverse Laplace Transform \(\mathcal {L}^{-1}_{t,s}\) that remains. Even for \(\delta =0\), this requires introduction of the Jacobi Theta function, not the best way to visualize the resulting situation. There are alternatives. One alternative is to make use of the rapid convergence of the series expansion

$$\begin{aligned} \left(\cosh b\sqrt{2s}\right)^{-(1+\delta )}&= \left[\frac{1}{2}\left(e^{b\sqrt{2s}} + e^{-b\sqrt{2s}}\right) \right]^{-(1+\delta )}\nonumber \\&= 2^{1+\delta } \, e^{-(1+\delta )\,b\sqrt{2s}} \left(1+ e^{-2b \sqrt{2s}}\right)^{-(1+\delta )}\nonumber \\&= 2^{1+\delta } \sum ^\infty _{j=0} (-1)^j \left( \begin{matrix} j+\delta \\ j \end{matrix} \right) e^{-\left(2j+1 + \delta \right) b\sqrt{2s}}. \end{aligned}$$
(44)

Using \(\mathcal {L}^{-1}_{t,s} \,e^{-c\sqrt{s}} = ce^{-c^2/4t}/2\sqrt{\pi }\,t^{3/2}\), we therefore have

$$\begin{aligned} Q_\delta \,(t,b)=2^{2+\delta }\Big /\sqrt{2\pi t}\; \sum ^\infty _{j=0} (-1)^j \begin{pmatrix} j+\delta \\ j \end{pmatrix} \left(2j+1+\delta \right) e^{-\frac{1}{2}\left(\frac{b^2}{t}\right)(2j+1+\delta )^2}\ . \end{aligned}$$
(45)

Eq. (45) is an alternating series \(\sum ^\infty _0 (-1)^j\, a_j\), with

$$\begin{aligned} a_{j+1}/a_j = \frac{j+\delta }{j} \; \frac{2j+1+\delta }{2j-1+\delta } \; e^{-2\,(2+\delta )\,b^2/t} \le (3+\delta )\, e^{-2\,(2+\delta )\,b^2/t} \end{aligned}$$

and so is certainly dominated by the first (Gaussian) term if

$$\begin{aligned} \frac{b^2}{t} \ge \ell n \left(3+\delta \right)\!\bigl /\! 2\,(2+ \delta ) \end{aligned}$$
(46)

Appendix B. Marginal Distribution of the Maximum, Small \(b^2/t\)

The analysis simplifies materially if \(\delta \) is an integer, which we henceforth assume. Then, in (45), we make the replacement \(j\rightarrow -1-j-\delta \), so that

$$\begin{aligned} Q_\delta \,(t,b) =2^{2+\delta }\!\Bigl /\!\sqrt{2\pi t} \;\sum ^{-(\delta +1)}_{j=-\infty } (-1)^j \begin{pmatrix} j+ \delta \\ j \end{pmatrix} \left(2j+1+\delta \right) e^{-\frac{1}{2}\left(\frac{b^2}{t}\right)(2j+1+\delta )^2}. \end{aligned}$$
(47)

Since \(\left(\begin{array}{l} j+ \delta \\ j \end{array}\right)=0\) when \(-\delta <j<0\), the upper bound in (47) can be replaced by \(-1\). Doing so, and adding to (47), we get

$$\begin{aligned} Q_\delta \,(t,b) = \frac{2^{1+\delta }}{\sqrt{2\pi t}} \;\sum ^\infty _{j=-\infty } (-1)^j \begin{pmatrix} j+ \delta \\ j \end{pmatrix} \left(2j+1+\delta \right) e^{-\frac{1}{2}\left(\frac{b^2}{t}\right) (2j+1+\delta )^2}. \end{aligned}$$
(48)

We can then make use of the extended Poisson transformation, which takes the form (see [14]),

$$\begin{aligned}&\sum ^\infty _{j=-\infty } (-1)^j \, f\!\left(j+\frac{1}{2}\right) = \frac{1}{i}\, \sum ^\infty _{-\infty } (-1)^j \, \bar{f}\!\left(j+\frac{1}{2}\right) \nonumber \\&\qquad \qquad \text {where}\qquad \bar{f}(j) \equiv \int ^\infty _{-\infty } f(w)\, e^{2\pi i\,jw}\, dw. \end{aligned}$$
(49)

For this purpose, we first assume that \(\delta \) is an even integer, and let \(j\rightarrow j-\frac{\delta }{2}\) in (48):

$$\begin{aligned} Q_\delta \,(t,b) = \frac{2^{2+\delta }}{\sqrt{2\pi t}} \;\sum ^\infty _{j=-\infty } (-1)^j \, (-1)^{\delta /2} \begin{pmatrix} j+ \frac{\delta }{2} \\ j- \frac{\delta }{2} \end{pmatrix}\!\left(j+\frac{1}{2}\right) e^{-\left(2b^2/t\right)\left(j+\frac{1}{2}\right)^2}. \end{aligned}$$
(50)

But \((-1)^{\delta /2} \left( \begin{array}{l} j+ \delta /2 \\ j-\delta /2 \end{array} \right) = \frac{1}{\delta !} \prod ^{\delta /2}_{k=1} \left( \left(k-\frac{1}{2}\right)^2 - \left(j +\frac{1}{2}\right)^2\right), \quad \text {and so}\)

$$\begin{aligned} Q_\delta \,(t,b)&= \frac{2^\delta }{\delta !} \prod ^{\delta /2}_{k=1} \left( \left(k-\frac{1}{2}\right)^2 + \frac{1}{2}\;\frac{\partial }{\partial b^2/t}\right) Q_0 \,(t,b)\nonumber \\&\quad \text {where}\quad Q_0\,(t,b) = \frac{4}{\sqrt{2\pi t}} \;\sum ^\infty _{-\infty } (-1)^j \left(j+\frac{1}{2}\right) e^{-\left(2b^2/t\right) \left(j+\frac{1}{2}\right)^2}. \end{aligned}$$
(51)

With minor changes of notation, this expression for \(Q_0\,(t,b)\) was obtained in Ref. [14], and (49) was used to transform it to

$$\begin{aligned} Q_0\,(t,b) = \frac{\pi }{b}\;\frac{t}{2b^2} \,\sum ^\infty _{-\infty } (-1)^j \left(j+\frac{1}{2}\right) e^{-\frac{\pi }{2}\;\frac{t}{b^2} \left(j+\frac{1}{2}\right)^2}. \end{aligned}$$
(52)

The first example of the use of (51) is for \(\delta =2\):

$$\begin{aligned} Q_2\,(t,b)&= \frac{2\pi }{b}\,\sum ^\infty _{-\infty } (-1)^j \left[ \frac{1}{4}\;\frac{t}{2b^2} \left(j+\frac{1}{2}\right) - \left(\frac{t}{2b^2}\right)^2 \left(j+\frac{1}{2}\right) \right. \nonumber \\&\qquad \qquad \qquad \left. + \pi ^2 \left(\frac{t}{2b^2}\right)^3 \left(j+\frac{1}{2}\right)^3 \right] e^{-\frac{\pi ^2}{2}\;\frac{t}{b^2} \left(j+\frac{1}{2}\right)^2}, \end{aligned}$$
(53)

and \(Q_\delta \) for higher values of \(\delta \) is even more involved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Percus, J.K., Percus, O.E. Reinforced Brownian Motion: A Prototype. J Stat Phys 156, 917–931 (2014). https://doi.org/10.1007/s10955-014-1036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1036-5

Keywords

Navigation