Skip to main content
Log in

The Theory of Individual Based Discrete-Time Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A general theory is developed to study individual based models which are discrete in time. We begin by constructing a Markov chain model that converges to a one-dimensional map in the infinite population limit. Stochastic fluctuations are hence intrinsic to the system and can induce qualitative changes to the dynamics predicted from the deterministic map. From the Chapman–Kolmogorov equation for the discrete-time Markov process, we derive the analogues of the Fokker–Planck equation and the Langevin equation, which are routinely employed for continuous time processes. In particular, a stochastic difference equation is derived which accurately reproduces the results found from the Markov chain model. Stochastic corrections to the deterministic map can be quantified by linearizing the fluctuations around the attractor of the map. The proposed scheme is tested on stochastic models which have the logistic and Ricker maps as their deterministic limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Here we use \(L(k)\) rather than \(\Lambda (k)\), which was used by the authors in Ref. [11]. This is to avoid confusion with \(\Lambda \) used in Eq. (44)

References

  1. Biancalani, T., Fanelli, D., Di Patti, F.: Stochastic Turing patterns in the Brusselator model. Phys. Rev. E 81, 046215 (2010)

    Article  ADS  Google Scholar 

  2. Black, A.J., McKane, A.J.: Stochastic formulation of ecological models and their applications. Trends Ecol. Evol. 27, 337–345 (2012)

    Article  Google Scholar 

  3. Butler, T., Goldenfeld, N.: Robust ecological pattern formation induced by demographic noise. Phys. Rev. E 80, 030902(R) (2009)

    Article  ADS  Google Scholar 

  4. Cencini, M., Vulpiani, A.: Finite size Lyapunov exponent: review on applications. J. Phys. A 46, 254019 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Challenger, J.D., Fanelli, D., McKane, A.J.: Intrinsic noise and discrete-time processes. Phys. Rev. E 88, 040102(R) (2013)

    Article  ADS  Google Scholar 

  6. Crutchfield, J.P., Farmer, J.D., Huberman, B.A.: Fluctuations and simple chaotic dynamics. Phys. Rep. 92, 45–82 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ewens, W.J.: Mathematical Population Genetics. I. Theoretical Introduction. Springer-Verlag, New York (2004)

    Book  Google Scholar 

  8. Fisher, R.A.: On the dominance ratio. Proc. R. Soc. Edinb. 42, 321–341 (1922)

    Google Scholar 

  9. Gao, J., Zheng, Z.: Direct dynamical test for deterministic chaos. Europhys. Lett. 25, 485–490 (1994)

    Article  ADS  Google Scholar 

  10. Gao, J., Zheng, Z.: Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys. Rev. E 49, 3807–3814 (1994)

    Article  ADS  Google Scholar 

  11. Gao, J.B., Hwang, S.K., Liu, J.M.: When can noise induce chaos? Phys. Rev. Lett. 82, 1132 (1999)

    Article  ADS  Google Scholar 

  12. Gardiner, C.W.: Handbook of Stochastic Methods, 4th edn. Springer-Verlag, Berlin (2009)

    Google Scholar 

  13. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gillespie, D.T.: Markov processes: An Introduction for Physical Scientists. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  15. Godfray, H.C.J., Hassell, M.P.: Discrete and continuous insect populations in tropical environments. J. Anim. Ecol. 58, 153–174 (1989)

    Article  Google Scholar 

  16. Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hassell, M.P.: Density-dependence in single-species populations. J. Anim. Ecol. 44, 283–295 (1975)

    Article  Google Scholar 

  18. Hassell, M.P., Comins, H.N.: Discrete time models for two-species competition. Theor. Popul. Biol. 9, 202–221 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. May, R.M.: Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 186, 645–647 (1974)

    Article  ADS  Google Scholar 

  20. May, R.M.: Biological populations obeying difference equations: stable points, stable cycles, and chaos. J. Theor. Biol. 51, 511–524 (1975)

    Article  Google Scholar 

  21. May, R.M., Oster, G.F.: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573–599 (1976)

    Article  Google Scholar 

  22. Mayer-Kress, G., Haken, H.: The influence of noise on the logistic model. J. Stat. Phys. 26, 149–171 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. McKane, A.J., Biancalani, T., Rogers, T.: Stochastic pattern formation and spontaneous polarisation: the linear noise approximation and beyond. Bull. Math. Biol. (2014). doi:10.1007/s11538-013-9827-4

  24. McKane, A.J., Newman, T.J.: Predator-prey cycles from resonant amplification of demographic stochasticity. Phys. Rev. Lett. 94, 218102 (2005)

    Article  ADS  Google Scholar 

  25. Moll, J.D., Brown, J.S.: Competition and coexistence with multiple life-history stages. Am. Nat. 171, 839–843 (2008)

    Article  Google Scholar 

  26. Neubert, M.G., Kot, M.: The subcritical collapse of predator populations in discrete-time predator-prey models. Math. Biosci. 110, 45–66 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  28. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)

    Article  ADS  Google Scholar 

  29. Reichl, L.E.: A Modern Course in Statistical Physics, 2nd edn. Wiley, New York (1998)

    Google Scholar 

  30. Ricker, W.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Article  Google Scholar 

  31. Risken, H.: The Fokker-Planck Equation, 2nd edn. Springer-Verlag, Berlin (1989)

    Book  MATH  Google Scholar 

  32. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Publishing, Cambridge, Mass (1994)

    Google Scholar 

  33. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.) Dynamical Systems and Turbulence. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer-Verlag, Berlin (1981)

    Google Scholar 

  34. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  35. Zunino, L., Soriano, M.C., Rosso, O.A.: Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys. Rev. E 86, 046210 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

AJM wishes to thank the mathematical biology group at the University of Oxford for hospitality during the period when a significant portion of this work was carried out. We also thank Amos Maritan for useful correspondence. JDC and DF acknowledge support from Programs Prin2009 and Prin2012 financed by the Italian MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Challenger.

Appendices

Appendix A: Derivation of the Kramers–Moyal expansion

In this appendix we discuss the derivation of the Kramers–Moyal expansion for discrete-time stochastic processes of the kind that we are interested in and which are described in Sect. 2 of the main text.

The form that we ultimately use, given by Eq. (22), is of a different type to that found in textbooks [12, 31]. However let us begin by briefly reviewing the derivation of the conventional form as given by Eq. (8). To derive this equation, we start from the Chapman–Kolmogorov equation which defines a Markov process. We shall suppress the dependence on the initial conditions \(z_0\) at \(t_0\), since they play no part in the derivation. Letting \(z' = z - \Delta z\), the integrand of the integral appearing in Eq. (7) may be written as

$$\begin{aligned} P( \left[ z-\Delta z \right] + \Delta z,t+1 |z-\Delta z,t)P(z-\Delta z,t). \end{aligned}$$

Taylor expanding this, the integrand equals

$$\begin{aligned} \sum ^{\infty }_{\ell =0} \left( -1 \right) ^{\ell } \frac{\left( \Delta z \right) ^{\ell }}{\ell !}\,\frac{\partial ^{\ell } }{\partial z^{\ell }} \left\{ P(z + \Delta z,t+1 |z,t)P(z,t) \right\} . \end{aligned}$$

In the Chapman–Kolmogorov equation we had to integrate over \(z'\). For fixed \(z\), this is equivalent to integrating over \(\Delta z\). We integrate \(\Delta z\) from minus infinity to plus infinity, even though it is “small”. This assumes that the integrand is very highly peaked and essentially gives no contribution to the integral apart from at very small \(\Delta z\).

Introducing the jump moments defined by

$$\begin{aligned} M_{\ell }(z) \equiv \int d(\Delta z) (\Delta z)^{\ell } P(z+\Delta z,t+1|z,t), \end{aligned}$$

we find that the Chapman–Kolmogorov equation reduces to Eq. (8). Another form for the \(M_{\ell }(z)\) is

$$\begin{aligned} M_{\ell }(z)=\int dw\,(w-z)^{\ell } P(w,t+1|z,t), \end{aligned}$$

from which the form (9) given in the main text can be found.

However, as described in the main text, the Kramers–Moyal expansion (8) is not so useful. Essentially this stems from the fact that \(\Delta z\) is not “small”, and so the expansion cannot usefully be truncated after a finite number (that is, two) terms. We showed, in Eqs. (16) and (17), that the first term in the expansion could be considerably simplified by taking the Fourier transform. We can also show this for the next term (the diffusion-like term). Its Fourier transform is

$$\begin{aligned}&\frac{1}{2N}\,\sum _{\ell =0}^{\infty } \frac{(-1)^{\ell }}{\ell !}\,\int \limits ^{\infty }_{-\infty } dz\,e^{ikz}\, \frac{\partial ^{\ell + 2}}{\partial z^{\ell + 2}} \left[ (p-z)^{\ell }\,p(1-p)\, P_t(z)\right] \nonumber \\&\quad = \frac{1}{2N}\,\sum _{\ell =0}^{\infty } \frac{1}{\ell !}\, \int \limits ^{\infty }_{-\infty } dz\,e^{ikz}\, \left( ik \right) ^{\ell + 2} \left( p - z \right) ^{\ell }\,p(1-p)\,P_t(z) \nonumber \\&\quad = \frac{1}{2N}\,\int \limits ^{\infty }_{-\infty } dz\,e^{ikz}\,e^{ik(p-z)}\, \left( ik \right) ^{2}\,p(1-p)\,P_t(z) \nonumber \\&\quad = \frac{1}{2N}\,\int \limits ^{\infty }_{-\infty } dz\,e^{ikp}\, \left( ik \right) ^{2}\,p(1-p)\,P_t(z) \nonumber \\&\quad = \frac{1}{2N}\,\int \limits ^{\infty }_{-\infty } dp\,e^{ikp}\, \left( ik \right) ^{2}\,p(1-p)\,\mathcal {P}_t(p) \nonumber \\&\quad = \frac{1}{2N}\,\int \limits ^{\infty }_{-\infty } dp\,e^{ikp}\, \frac{\partial ^2}{\partial p^2}\left[ p(1-p) \mathcal {P}_t(p) \right] . \end{aligned}$$

Taking the inverse Fourier transform of this expression gives the diffusion-like term in Eq. (19).

In order to be relatively concise, there are several aspects of the above derivation that we have treated in a rather informal manner. In the first three lines of the derivation \(p\) is shorthand for \(p(z)\). On the fourth line the integral takes the form \(\int ^{\infty }_{-\infty } f(p)\,P_{t}(z)\,dz\), where again \(p=p(z)\), and \(f(p)\) in this case is \(p(1-p) e^{ikp}\). The change of variable used to obtain the next line may not be \(1-1\) and one may have to split up the range of integration, and carry out different transformations in different ranges. For example, in the case of the logistic map, the range is split up so that for \(0 \le z \le 1/2\), the transformation is \(z=z_{-} \equiv [1 - \sqrt{1 - (4p/\lambda )]}/2\), whereas for \(1/2 \le z \le 1\) it is \(z=z_{+} \equiv [1 + \sqrt{1 - (4p/\lambda )]}/2\). The key point is that this has no effect on \(f(p)\), since \(p=\lambda z(1-z)\) takes on the same value whether \(z=z_{-}\) or \(z=z_{+}\). Thus the only relevant part of the transformation is \(P_t(z) dz = \mathcal {P}_t(p) dp\), where

$$\begin{aligned} \mathcal {P}_t(p) = \frac{1}{\lambda }\, \left[ 1 - \frac{4p}{\lambda } \right] ^{-1/2} \left\{ P_t(z=z_{-}) + P_t(z=z_{+}) \right\} . \end{aligned}$$

Having checked that the simplification occurs for \(r=2\) (the diffusion-like term), we now show that it occurs to all orders in \(r\). To do, this let us eliminate the jump moments \(M_{\ell }\) in favor of the jump moments \(J_r\) by substituting Eq. (11) into Eq. (8) to find

$$\begin{aligned} P_{t+1}(z)&= \sum _{\ell =0}^{\infty } \frac{(-1)^{\ell }}{\ell !} \frac{\partial ^{\ell }}{\partial z^{\ell }} \left[ \sum ^{\ell }_{r=0}\, {\ell \atopwithdelims ()r} \left( p - z \right) ^{\ell - r} J_r(p) P_t(z)\right] \nonumber \\&= \sum _{\ell =0}^{\infty } \sum ^{\ell }_{r=0}\,\frac{(-1)^{\ell }}{(\ell - r)!\,r!} \frac{\partial ^{\ell }}{\partial z^{\ell }} \left[ \left( p - z \right) ^{\ell - r} J_r(p) P_t(z)\right] . \end{aligned}$$
(48)

But now for any series \(\sum _{\ell =0}^{\infty } \sum ^{\ell }_{r=0}\,a_{r \ell } = \sum ^{\infty }_{r=0}\,\sum _{\ell = r}^{\infty } a_{r \ell }\), and so

$$\begin{aligned} P_{t+1}(z)&= \sum _{r=0}^{\infty } \sum ^{\infty }_{\ell =r}\, \frac{(-1)^{\ell }}{(\ell - r)!\,r!} \frac{\partial ^{\ell }}{\partial z^{\ell }} \left[ \left( p - z \right) ^{\ell - r} J_r(p) P_t(z)\right] \nonumber \\&= \sum _{r=0}^{\infty }\,\frac{(-1)^{r}}{r!}\,\sum ^{\infty }_{m=0}\, \frac{(-1)^{m}}{m!} \frac{\partial ^{r+m}}{\partial z^{r+m}} \left[ \left( p - z \right) ^{m} J_r(p) P_t(z)\right] . \end{aligned}$$
(49)

We now take the Fourier transform of Eq. (49) to find:

$$\begin{aligned} \tilde{P}_{t+1}(k)&= \int \limits ^{\infty }_{-\infty } dz\,e^{ikz} P_{t+1}(z) \nonumber \\&= \sum _{r=0}^{\infty }\,\frac{(-1)^{r}}{r!}\,\int \limits ^{\infty }_{-\infty } dz\,e^{ikz}\, \sum ^{\infty }_{m=0}\,\frac{(-1)^{m}}{m!} \frac{\partial ^{r+m}}{\partial z^{r+m}} \left[ \left( p - z \right) ^{m} J_r(p) P_t(z)\right] \nonumber \\&= \sum _{r=0}^{\infty }\,\frac{1}{r!}\,\int \limits ^{\infty }_{-\infty } dz\,e^{ikz}\, \sum ^{\infty }_{m=0}\,\frac{1}{m!} \left( ik \right) ^{r+m}\, \left[ \left( p - z \right) ^{m} J_r(p) P_t(z)\right] \nonumber \\&= \sum _{r=0}^{\infty }\,\frac{1}{r!}\,\int \limits ^{\infty }_{-\infty } dz\,e^{ikz}\, e^{ik(p-z)}\,\left( ik \right) ^{r}\,J_r(p) P_t(z) \nonumber \\&= \sum _{r=0}^{\infty }\,\frac{1}{r!}\,\int \limits ^{\infty }_{-\infty } dz\,e^{ikp}\, \left( ik \right) ^{r}\,J_r(p) P_t(z) \nonumber \\&= \sum _{r=0}^{\infty }\,\frac{1}{r!}\,\int \limits ^{\infty }_{-\infty } dp\,e^{ikp}\, \left( ik \right) ^{r}\,J_r(p) \mathcal {P}_t(p) \nonumber \\&= \sum _{r=0}^{\infty }\,\frac{(-1)^r}{r!}\,\int \limits ^{\infty }_{-\infty } dp\,e^{ikp}\, \frac{\partial ^{r}}{\partial p^{r}}\,\left[ J_r(p) \mathcal {P}_t(p) \right] . \end{aligned}$$
(50)

Taking the inverse Fourier transform of this equation we find Eq. (22).

Appendix B: The Form of the Jump Moments \(J_r\) for large \(N\).

The truncation of the Kramers–Moyal expansion (22) at the \(r=2\) term, relies on showing that the \(J_r\) fall off like \(N^{-2}\) for \(r > 2\). In Sect. 2, we have already shown that \(J_1 = 0\) (and that \(J_0 = 1\)). For orientation, let us determine \(J_2\):

$$\begin{aligned} \left\langle \left[ z_{t+1} - p_t \right] ^2 \right\rangle _{z_{t}=z}&= N^{-2}\,\left\langle n^2_{t+1} \right\rangle _{n_{t}=m} - 2N^{-1}p\,\left\langle n_{t+1} \right\rangle _{n_{t}=m} + p^2 \nonumber \\&= N^{-2}\,\sum _{n} n^2 P(n,t+1|m,t) - 2N^{-1}p\,\sum _{n} n P(n,t+1|m,t) + p^2 \nonumber \\&= N^{-2}\,\sum _{n} n^2 Q_{n m} - 2N^{-1}p\,\sum _{n} n Q_{n m} + p^2 \nonumber \\&= N^{-2}\left[ Np(1-p) + N^{2}p^{2} \right] - 2N^{-1}p\,Np + p^{2} \nonumber \\&= N^{-1}p(1-p). \end{aligned}$$
(51)

More generally in this appendix we want to investigate the form of \(J_r\) for large \(N\) and any value of \(r\). Now,

$$\begin{aligned} J_{r}(p)&= \left\langle \left[ z_{t+1}-p_t \right] ^r \right\rangle _{z_{t}=z} \nonumber \\&= \frac{1}{N^{r}}\,\left\langle \left[ n_{t+1} - (Np_t) \right] ^r \right\rangle _{n_{t}=m} \nonumber \\&= \frac{1}{N^{r}}\,\sum ^{r}_{s=0}\,{r \atopwithdelims ()s}\, \left( - 1 \right) ^{s}\,\left( Np \right) ^{r - s}\,\left\{ \sum _n n^s Q_{n m} \right\} . \end{aligned}$$
(52)

If we denote the \(s\)th moment of the binomial distribution by \(\mu _{s}(p)\), then Eq. (52) becomes

$$\begin{aligned} J_{r}(p) = \frac{1}{N^{r}}\,\sum ^{r}_{s=0}\,{r \atopwithdelims ()s}\, \left( - 1 \right) ^{s}\,\left( Np \right) ^{r - s}\,\mu _{s}(p). \end{aligned}$$
(53)

So to calculate the \(J_{r}(p)\), the moments of the binomial distribution need to be known. We have seen that \(J_1(p)=0\) and \(J_{2}(p)=N^{-1}p(1-p)\). We can find \(J_{3}(p)\) from

$$\begin{aligned} J_{3}(p)&= \frac{1}{N^{3}}\,\left[ (Np)^3 - 3 (Np)^2 \mu _1 + 3 (Np) \mu _2 - \mu _3 \right] \nonumber \\&= - \frac{p(1-p)(1-2p)}{N^2}, \end{aligned}$$
(54)

which goes like \(N^{-2}\) and so does not contribute to the generalization of the Fokker–Planck equation. We now show that all \(J_{r}(p)\) for \(r \ge 3\) fall off this fast. We use properties of the factorial moments to prove this result. Recall that the factorial moments are defined by

$$\begin{aligned} \nu _r(p) \equiv \langle n(n-1)\ldots (n-r+1) \rangle = \sum ^{N}_{n=0}\, n(n-1)\ldots (n-r+1)\,{N \atopwithdelims ()n} p^n (1-p)^{N-n}, \end{aligned}$$
(55)

and can be shown to be given by

$$\begin{aligned} \nu _r(p) = N(N-1)\ldots (N-r+1) p^r. \end{aligned}$$
(56)

The proof is straightforward. Define

$$\begin{aligned} \phi (p,w) = \sum ^{N}_{n=0}\,{N \atopwithdelims ()n} p^n (1-p)^{N-n} w^n = \left[ pw + (1-p) \right] ^N. \end{aligned}$$

Then differentiating \(r\) times with respect to \(w\) and setting \(w=1\) gives \(\nu _r(p)\), and so the result.

Now,

$$\begin{aligned} \nu _r(p) =\langle n(n-1)\ldots (n-r+1) \rangle = \langle n \left[ n^{r-1} - A n^{r-2} + C_1 n^{r-3} + \cdots \right] \rangle , \end{aligned}$$

where \(A = 1 + \cdots + (r-1) = r(r-1)/2\) and where \(C_1\) (like the constants \(C_2\) and \(C_3\) appearing below) is constant which need not concern us. Here we assume that \(r \ge 3\). So we have,

$$\begin{aligned} \nu _r(p)&= \langle n^r \rangle - A \langle n^{r-1} \rangle + C_1 \langle n^{r-2} \rangle + \cdots \nonumber \\ \mathrm {and} \ \ \nu _{r-1}(p)&= \langle n^{r-1} \rangle - C_2 \langle n^{r-2} \rangle + \cdots . \end{aligned}$$

These results imply that

$$\begin{aligned} \langle n^r \rangle = \nu _r + A \langle n^{r-1} \rangle + \cdots = \nu _r + A \nu _{r-1} + C_3 \nu _{r-2} + \cdots . \end{aligned}$$

We can now use the result (56): \(\nu _r(p) = (Np)^r -Ap (Np)^{r-1} + \mathcal {O}(N)^{r-2}\) to see that

$$\begin{aligned} \mu _r(p) \equiv \langle n^r \rangle = (Np)^r + A(1-p) (Np)^{r-1} + \mathcal {O}(N)^{r-2}. \end{aligned}$$
(57)

for \(r \ge 3\). Since \(A=r(r-1)/2\) and \(\mu _2(p) = (Np)^2 + Np(1-p)\), the result is also true for \(r=0,1,2\) with the correction term being exactly zero.

Substituting Eq. (57) into Eq. (53) gives

$$\begin{aligned} J_{r}(p)&= \frac{1}{N^{r}}\,\sum ^{r}_{s=0}\,{r \atopwithdelims ()s}\, \left( - 1 \right) ^{s}\,\left[ \left( Np \right) ^{r} + A(1-p) \left( Np \right) ^{r - 1} + \mathcal {O}\left( N ^{r - 2} \right) \right] \nonumber \\&= p^{r}\,\sum ^{r}_{s=0}\,{r \atopwithdelims ()s}\,\left( - 1 \right) ^{s}\, \left[ 1 + \frac{1}{2} s(s-1) (1-p) \left( Np \right) ^{-1} + \mathcal {O}\left( N^{-2} \right) \right] . \end{aligned}$$
(58)

But

$$\begin{aligned} \sum ^r_{s=0}\,{r \atopwithdelims ()s}\,\left( - 1 \right) ^{s} = 0, \ \ \mathrm {for\ } r \ne 0, \end{aligned}$$

and if \(r > 2\)

$$\begin{aligned} \sum ^r_{s=0}\,{r \atopwithdelims ()s}\,\left( - 1 \right) ^{s}\,s(s-1) = 0. \end{aligned}$$

Therefore Eq. (58) proves that \(J_r(p)=\mathcal {O}(N^{-2})\) for \(r > 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challenger, J.D., Fanelli , D. & McKane, A.J. The Theory of Individual Based Discrete-Time Processes. J Stat Phys 156, 131–155 (2014). https://doi.org/10.1007/s10955-014-0990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0990-2

Keywords

Navigation