Skip to main content
Log in

Pinning Model in Random Correlated Environment: Appearance of an Infinite Disorder Regime

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the influence of a correlated disorder on the localization phase transition in the pinning model (Random polymer models, 2007). When correlations are strong enough, an infinite disorder regime arises: large and frequent attractive regions appear in the environment. We present here a pinning model in random binary (\(\{-1,1\}\)-valued) environment. Defining infinite disorder via the requirement that the probability of the occurrence of a large attractive region is sub-exponential in its size, we prove that it coincides with the fact that the critical point is equal to its minimal possible value, namely \(h_c(\beta )=-\beta \). We also stress that in the infinite disorder regime, the phase transition is smoother than in the homogeneous case, whatever the critical exponent of the homogeneous model is: disorder is therefore always relevant. We illustrate these results with the example of an environment based on the sign of a Gaussian correlated sequence, in which we show that the phase transition is of infinite order in presence of infinite disorder. Our results contrast with results known in the literature, in particular in the case of an IID disorder, where the question of the influence of disorder on the critical properties is answered via the so-called Harris criterion, and where a conventional relevance/irrelevance picture holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexander, K.S.: The effect of disorder on polymer depinning transitions. Commun. Math. Phys. 279, 117–146 (2008)

    Article  ADS  MATH  Google Scholar 

  2. Alexander, K.S., Zygouras, N.: The effect of disorder on polymer depinning transitions. Commun. Math. Phys. 291, 659–689 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Berger, Q.: Comments on the influence of disorder for pinning model in gaussian correlated environment. ALEA 10(2), 953–977 (2013)

    MATH  Google Scholar 

  4. Berger, Q., Lacoin, H.: Sharp critical behavior for random pinning model with correlated environment. Stoch. Proc. Appl. 122(4), 1397–1436 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berger, Q., Toninelli, F.L.: Hierarchical pinning model in correlated random environment. Ann. Inst. H. Poincaré Probab. Stat. 48(3), 781–816 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Birkner, M., Greven, A., den Hollander, F.: Quenched large deviation principle for words in a letter sequence. Probab. Theory Relat. Fields 148, 403–456 (2010)

    Article  MATH  Google Scholar 

  7. Bolthausen, E., Deuschel, J.-D., Zeitouni, O.: Entropic repulsion of the lattice free field. Commun. Math. Phys. 170(2), 417–443 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Cheliotis, D., den Hollander, F.: Variational characterization of the critical curve for pinning of random polymers. Ann. Probab. 41, 1767–1805 (2013)

    Google Scholar 

  9. Cornfeld, I.P., Fomin, S.V., Sinai, I.G.: Ergodic Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  10. den Hollander, F.: Random Polymers, Lecture notes in Mathematics - École d’été de Probabilité de Saint-Flour XXXVII-2007. Springer, Berlin (2009)

    Google Scholar 

  11. Derrida, B., Giacomin, G., Lacoin, H., Toninelli, F.L.: Fractional moment bounds and disorder relevance for pinning models. Commun. Math. Phys. 287, 867–887 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Doney, R.A.: One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Relat. Fields 107, 451–465 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Doney, R.A., Korshunov, D.A.: Local asymptotics for the time of first return to the origin of transient random walk. Stat. Probab. Lett. 81(5), 363–365 (2011)

    MathSciNet  Google Scholar 

  14. Fisher, D.S.: Random transverse field Ising spin chains. Phys. Rev. Lett. 69(3), 534–537 (1992)

    Article  ADS  Google Scholar 

  15. Fisher, D.S.: Random antiferromagnetic quantum spin chains. Phys. Rev. B 50(6), 3799–3821 (1994)

    Article  ADS  Google Scholar 

  16. Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984)

    Article  ADS  MATH  Google Scholar 

  17. Giacomin, G.: Random Polymer Models. Imperial College Press, London (2007)

    Book  MATH  Google Scholar 

  18. Giacomin, G.: Renewal convergence rates and correlation decay for homogeneous pinning models. Electron. J. Probab. 13, 513–529 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Giacomin, G.: Disorder and Critical Phenomena Through Basic Probability Models, Lecture notes in Mathematics - École d’été de Probabilité de Saint-Flour XL-2010. Springer, Berlin (2011)

    Google Scholar 

  20. Giacomin, G., Lacoin, H., Toninelli, F.L.: Disorder relevance at marginality and critical point shift. Ann. Inst. H. Poincaré 47, 148–175 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Giacomin, G., Toninelli, F.L.: Smoothing effect of quenched disorder on polymer depinning transitions. Commun. Math. Phys. 266, 1–16 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Harris, A.B.: Effect of random defects on the critical behaviour of Ising models. J. Phys. C 7, 1671–1692 (1974)

    Article  ADS  Google Scholar 

  23. Igloí, F., Monthus, C.: Strong disorder RG approach of random systems. Phys. Rep. 412, 277–431 (2005)

    Article  ADS  Google Scholar 

  24. Lacoin, H.: The martingale approach to disorder irrelevance for pinning models. Elecon. Comm. Probab. 15, 418–427 (2010)

    MATH  MathSciNet  Google Scholar 

  25. Nadkarni, M.G., Nadkarni, M.G.: Birkhäuser advanced texts. Basic Ergodic Theory. Springer, Berlin (1998)

    Google Scholar 

  26. Piterbarg, V.I.: Gaussian stochastic processes, togi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern. 19, 155–199 (1982)

    MathSciNet  Google Scholar 

  27. Poisat, J.: Ruelle-perron-frobenius operator approach to the annealed pinning model with gaussian long-range disorder. Mark. Proc. Relat. Fields 19(3), 577–606 (2013)

    Google Scholar 

  28. Shields, P.C.: The ergodic theory of discrete sample paths. Graduate Studies in Mathematics. American Mathematical Society, Providence (1996)

    Google Scholar 

  29. Toninelli, F.L.: Critical properties and finite-size estimates for the depinning transition of directed random polymers. J. Stat. Phys. 26, 1025–1044 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. Toninelli, F.L.: A replica-coupling approach to disordered pinning models. Commun. Math. Phys. 280, 389–401 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Vojta, T.: Rare region effects at classical, quantum and nonequilibrium phase transitions. J. Phys. A 39, 143–205 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. Weinrib, A., Halperin, B.I.: Critical phenomena in systems with long-range-correlated quenched disorder. Phys. Rev. B 27, 413–427 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We deeply thank F.L. Toninelli for his constant support in this project, and his numerous and precious advices and proof readings, as well as H. Lacoin who was of great help on the manuscript. This work was initiated during the author’s doctorate at the Physics Department of École Normale Supérieure de Lyon, and its hospitality and support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Berger.

Appendices

Appendix 1: On the Sign of Gaussian Sequences

Let \(\mathsf {W}=\{\mathsf {W}_n\}_{n\in \mathbb {N}}\) be a stationary Gaussian process, centered and with unitary variance, and with covariance matrix denoted by \(\Upsilon \), the covariance function being \(\rho _k = \Upsilon _{i,i+k}\). We also denote \(\Upsilon _l\) the covariance matrix of the vector \((\mathsf {W}_1,\ldots ,\mathsf {W}_l)\), which is just a restriction of \(\Upsilon \). We recall Assumption (2.11): correlations are non-negative, and power-law decaying,

$$\begin{aligned} \rho _{k}\mathop { \sim }\limits ^{k\rightarrow \infty } c k^{- a}, \quad \text {for some } a>0 \text { and } c>0. \end{aligned}$$
(6.1)

Proof Proof of Proposition 3.2

We recall here a more general lower bound, dealing with the probability for a Gaussian vector to be componentwise larger than some given value.

Lemma 5.8

[3,  Lemma A.3] Under assumption (2.11) with \(a<1\), there exist two constants \(c,C>0\) such that for every \(l\in \mathbb {N}\), one has

$$\begin{aligned} {\mathbb P} \left( \forall i\in \{1,\ldots ,l\},\ \mathsf {W}_i\geqslant A \right) \geqslant c^{-1}\, \exp \left( -c \big ( A \vee C\sqrt{\log l} \big ) ^2 l^{ a} \right) . \end{aligned}$$
(6.2)

Taking \(A=0\) in this Lemma gives (3.8).

To simplify notations, we prove the upper bound for the specific sequence \(i_k=k\), \(k\in \{1,\ldots ,n\}\). The general proof follows the same reasoning. One first observes that for any subset \(\{k_1,\ldots ,k_m\}\subset \{1,\ldots ,n\}\), \(m\in \mathbb {N}\), one has

$$\begin{aligned} {\mathbb P} \left( \mathsf {W}_i\geqslant 0 \, ;\, \forall i\in \{1,\ldots ,n\}\right) \leqslant {\mathbb P} \left( \mathsf {W}_{k_j}\geqslant 0 \, ;\, \forall j\in \{1,\ldots ,m\}\right) \end{aligned}$$
(6.3)

The idea is that, if the \(k_j\)’s are sufficiently far one from another, the Gaussian vector \((\mathsf {W}_{k_1},\ldots ,\mathsf {W}_{k_m})\) behaves like an independent one.

Claim 5.9

  • If \( a<1\), then there exists some \(A>0\) such that taking \(k_j:=j\lfloor A n^{1- a}\rfloor \) for \(j\in \{0,\ldots ,m:= \lceil A^{-1} n^{ a} \rceil \}\), one has some constant \(c>0\) such that for all \(n\in {\mathbb N} \)

    $$\begin{aligned} {\mathbb P} \left( \mathsf {W}_{k_j}\geqslant 0 \, ;\, \forall j\in \{1,\ldots ,m\}\right) \leqslant e^{-c m}. \end{aligned}$$
    (6.4)
  • If \( a> 1\), then there exists some integer \(A>0\) such that taking \(k_j:=j A\) for \(j\in \{0,\ldots ,m:= \lceil A^{-1}n \rceil \}\), one has some constant \(c>0\) such that for all \(n\in {\mathbb N} \)

    $$\begin{aligned} {\mathbb P} \left( \mathsf {W}_{k_j}\geqslant 0 \, ;\, \forall j\in \{1,\ldots ,m\}\right) \leqslant e^{-c m}. \end{aligned}$$
    (6.5)

This claim, together with (6.3), gives the conclusion. We now prove the claim.

Under \({\mathbb P} \), the vector \((\mathsf {W}_{k_1},\ldots ,\mathsf {W}_{k_m})\) is a Gaussian vector with covariance matrix \(\widetilde{\Upsilon }_m\), with \(\widetilde{\Upsilon }_{ij} = \Upsilon _{k_i,k_j}=\rho _{|k_j-k_i|}\) for \(i,j\in \{1,\ldots ,m\}\). We note \(\widetilde{\mathbb P} \) the law of this \(m\)-dimensional vector. Then if \(\widehat{\mathbb P} \) denotes the law of a \(m\)-dimensional independent standard Gaussian vector \({\mathcal N} (0,\mathrm{Id})\), a change of measure procedure gives thanks to the Cauchy-Schwarz inequality

$$\begin{aligned} \widetilde{\mathbb P} \left( \mathsf {W}_{j}\geqslant 0 \, ;\, \forall j\in \{1,\ldots ,m\}\right) \leqslant \left( \frac{1}{2} \right) ^{m/2} \widehat{\mathbb E} \left[ \left( \frac{\mathrm{d} \widetilde{\mathbb P} }{\mathrm{d} \widehat{\mathbb P} }\right) ^2\right] ^{1/2}. \end{aligned}$$
(6.6)

One has \(\frac{\mathrm{d} \widetilde{\mathbb P} }{\mathrm{d} \widehat{\mathbb P} }(X) = (\det \widetilde{\Upsilon }_m)^{-1/2} e^{-\frac{1}{2} \langle (\widetilde{\Upsilon }_m^{-1}-I)X,X\rangle }\) from the definitions of \(\widetilde{\mathbb P} \) and \(\widehat{\mathbb P} \), so that from a Gaussian computation, one gets

$$\begin{aligned} \widehat{\mathbb E} \left[ \left( \frac{\mathrm{d} \widetilde{\mathbb P} }{\mathrm{d} \widehat{\mathbb P} }\right) ^2\right] ^{1/2} = (\det \widetilde{\Upsilon }_m)^{-1/2}(\det (2 (\widetilde{\Upsilon }_m)^{-1}-I))^{-1/4} = \det (I-V^2)^{-1/4} \end{aligned}$$
(6.7)

where we defined \(V:=\widetilde{\Upsilon }_m-I\).

We now estimate \(\det (I-V^2)\). Note that the maximal eigenvalue \(\widetilde{\lambda }\) of \(\widetilde{\Upsilon }_m \) verifies

$$\begin{aligned} \widetilde{\lambda }\leqslant \max _{i\in \{1,\ldots ,n\}} \sum _{j=1}^{n} \widetilde{\Upsilon }_{ij} \leqslant 1+2\sum _{p=1}^{m} \rho _{k_p}. \end{aligned}$$
(6.8)

Then we use the definition of \(k_p\) and \(m\), and the assumption (2.11) on \((\rho _k)_{k\geqslant 0}\). We get:

  • if \( a<1\) one has \(\widetilde{\lambda }\leqslant 1+c A^{- a} n^{- a(1- a)} m^{1- a} \leqslant 1+ cA^{-1}\),

  • if \( a>1\) one has \(\widetilde{\lambda }\leqslant 1+c A^{- a}\).

In both cases one chooses \(A\) large enough so that \(\widetilde{\lambda }\leqslant 3/2\). Thus the eigenvalues of \(I-V^{2}\) are bounded from below by \( 1-(\widetilde{\lambda }-1)^2\geqslant 3/4\), so that in the end one has \(\det (I-V^2)\geqslant (3/4)^m\). Combining (6.7) and (6.6) one gets

$$\begin{aligned} \bar{\mathbb P} \left( \mathsf {W}_{j}\geqslant 0 \, ;\, \forall j\in \{1,\ldots ,m\}\right) \leqslant \left( \frac{1}{2} \right) ^{m/2} \left( \frac{3}{4} \right) ^{-m/4}\leqslant 3^{-m/4}. \end{aligned}$$
(6.9)

\(\square \)

Appendix 2: Estimate on the Homogeneous Model

The following Lemma tells that \(n\approx \mathtt {F}(h)^{-1}\) is the threshold at which the partition function starts growing exponentially.

Lemma 5.10

We take \(\alpha \ne 1\). There exist \(\epsilon >0\), and constants \(c, c', c''>0\) not depending on \(\epsilon \), such that if \(0<h\leqslant c'' \epsilon ^{\alpha \wedge 1} \leqslant 1\), then

  • one has \(Z_{n,h}^\mathrm{pur}\leqslant 1+c (n\mathtt {F}(h))^{\alpha \wedge 1} \leqslant 1+c \epsilon ^{\alpha \wedge 1}\) for every \(n\leqslant \epsilon \mathtt {F}(h)^{-1}\);

  • one has \(Z_{n,h}^\mathrm{pur} \leqslant \exp ( c' \epsilon ^{\alpha \wedge 1 -1} \mathtt {F}(h) n)\) for every \(n\geqslant \epsilon \mathtt {F}(h)^{-1}\).

Proof

Because the case \(\alpha >1\) is easier (essentially since \(\mathtt {F}(h)\) is proportional to \(h\)), we restrict to the case \(\alpha <1\).

Using that \({\mathbf P} (|\tau \cap [0,n]|\geqslant k) \leqslant (1-\bar{\mathrm {K}}(n))^k\), one writes

$$\begin{aligned} Z_{n,h}^\mathrm{pur} = 1+ \sum _{k=1}^{n} (e^{kh} - e^{(k-1)h}) {\mathbf P} (|\tau \cap [0,n]|\geqslant k) \leqslant 1+ \sum _{k=1}^{n_0} h \left( e^h (1- \bar{\mathrm {K}}(n))\right) ^k. \end{aligned}$$
(7.1)

Then, there is some constant \(cst.>0\) such that \(\bar{\mathrm {K}}(n) \geqslant cst. n^{-\alpha } \). Since \(h\in [0,1]\), we have that \(e^h (1- \bar{\mathrm {K}}(n)) \leqslant 1 +2h- cst. n^{-\alpha }\). Since \(\mathtt {F}(h)\) is of order \(h^{1/\alpha }\), we get that, uniformly for \(n\leqslant \epsilon \mathtt {F}(h)^{-1}\), one has \(n^{-\alpha } \geqslant \epsilon ^{-\alpha } h\). Therefore, if \(\epsilon \) is small enough, \(e^h (1- \bar{\mathrm {K}}(n)) \leqslant 1 - \frac{1}{2} cst. n^{-\alpha }<1\). From (7.1) one then gets

$$\begin{aligned} Z_{n_0,h}^\mathrm{pur} \leqslant 1+ h \sum _{k=1}^{n} \left( 1- \frac{1}{2} cst. n^{-\alpha } \right) ^k \leqslant 1+ \frac{h}{\frac{1}{2} cst. n^{-\alpha }}, \end{aligned}$$
(7.2)

which gives \(Z_{n,h}^\mathrm{pur}\leqslant 1+c (n\mathtt {F}(h))^{\alpha \wedge 1}\), since \(\mathtt {F}(h)\) is of order \(h^{1/\alpha }\).

For the second point, one uses that for any two integers \(n_1,n_2\), decomposing over the first return time after \(n_1\), one gets that \(e^hZ_{n_1+n_2,h}^\mathrm{pur} \leqslant e^hZ_{ n_1,h}^\mathrm{pur} e^hZ_{ n_2,h}^\mathrm{pur}\). From this, one gets that for any \(p\in {\mathbb N} \)

$$\begin{aligned} e^h Z_{p n_0,h}^\mathrm{pur} \leqslant \left( e^h Z_{n_0,h}^\mathrm{pur} \right) ^p \leqslant e^{ p \, \frac{c'}{2} \epsilon ^{\alpha } } = e^{ \frac{c'}{2} \epsilon ^{\alpha -1} p\, n_0 \mathtt {F}(h) } \end{aligned}$$
(7.3)

where we used the previous bound on \(Z_{n_0,h}^\mathrm{pur} \), the fact that \(h\leqslant c'' \epsilon ^{\alpha }\), and the definition of \(n_0= \epsilon \mathtt {F}(h)^{-1}\). The general bound for \(n\geqslant n_0\) relies on the monotonicity of \(Z_{n,h}^\mathrm{pur}\) in \(n\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, Q. Pinning Model in Random Correlated Environment: Appearance of an Infinite Disorder Regime. J Stat Phys 155, 544–570 (2014). https://doi.org/10.1007/s10955-014-0965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0965-3

Keywords

Mathematics Subject Classification

Navigation