Skip to main content
Log in

A Low Temperature Analysis of the Boundary Driven Kawasaki Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Low temperature analysis of nonequilibrium systems requires finding the states with the longest lifetime and that are most accessible from other states. We determine these dominant states for a one-dimensional diffusive lattice gas subject to exclusion and with nearest neighbor interaction. They do not correspond to lowest energy configurations even though the particle current tends to zero as the temperature reaches zero. That is because the dynamical activity that sets the effective time scale, also goes to zero with temperature. The result is a non-trivial asymptotic phase diagram, which crucially depends on the interaction coupling and the relative chemical potentials of the reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beltrán, J., Landim, C.: Tunneling of the Kawasaki dynamics at low temperatures in two dimensions. J. Stat. Phys. 40, 1065–1114 (2010)

    Google Scholar 

  2. Bollobas, B.: Modern Graph Theory. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  3. Bovier, A., den Hollander, F., Spitoni, C.: Homogeneous nucleation for Glauber and Kawasaki dynamics in large volumes at low temperatures. Ann. Appl. Probab. 38, 661–713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bricmont, J., Kuroda, K., Lebowtiz, J.L.: First order phase transitions in lattice and continuous systems: extension of Pirogov-Sinai theory. Commun. Math. Phys. 101, 501–538 (1985)

    Article  ADS  MATH  Google Scholar 

  5. Cancrini, N., Cesi, F., Martinelli, F.: The spectral gap for the Kawasaki dynamics at low temperature. J. Stat. Phys. 95, 215–271 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A, Math. Gen. 26, 1493–1517 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. P07023 (2007)

  8. De Smedt, G., Godrèche, C., Luck, J.M.: Metastable states of the Ising chain with Kawasaki dynamics. Eur. Phys. J. B 32, 215–225 (2003)

    Article  ADS  Google Scholar 

  9. Dobrushin, R.L.: Existence of phase transitions in models of a lattice gas. In: Proc. Fifth Berkeley Sympos. Math. Statist. and Prob., vol. 3, pp. 73–87. Univ. of Calif. Press, Berkeley (1966)

    Google Scholar 

  10. Griffiths, R.B.: Rigorous results and theorems. In: Domb, C., Green, M.S. (eds.) Exact Results. Phase Transitions and Critical Phenomena, vol. 1 (1972)

    Google Scholar 

  11. Slawny, J.: In: Domb, C., Lebowitz, J.L. (eds.) Low-Temperature Properties of Classical Lattice Systems: Phase Transitions and Phase Diagrams, vol. 11 (1987)

    Google Scholar 

  12. Gois, B., Landim, C.: Zero-temperature limit of the Kawasaki dynamics for the Ising lattice gas in a large two-dimensional torus. arXiv:1305.4542

  13. den Hollander, F., Nardi, F.R., Troiani, A.: Kawasaki dynamics with two types of particles: stable/metastable configurations and communication heights. J. Stat. Phys. 145, 1423–1457 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. Phys. Rev. 145, 224–230 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kolomeisky, A.B., Schütz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A, Math. Gen. 31, 6911–6919 (1998)

    Article  ADS  MATH  Google Scholar 

  16. Maes, C., Netočný, K.: Heat bounds and the blowtorch theorem. Ann. Henri Poincaré November, 1–10 (2012)

    Google Scholar 

  17. Miekisz, J.: Evolutionary game theory and population dynamics. In: Capasso, V., Lachowicz, M. (eds.) Multiscale Problems in the Life Sciences, from Microscopic to Macroscopic. Lecture Notes in Mathematics, vol. 269, p. 316 (2008)

    Google Scholar 

  18. Miekisz, J.: Private Communication

  19. Miekisz, J.: Stochastic stability in spatial games. J. Stat. Phys. 117, 99110 (2004)

    Article  MathSciNet  Google Scholar 

  20. Minlos, R.A., Sinai, Ya.G.: New results on the phase transitions of the 1st kind in lattice gas models. In: Tr. Mosk. Mat. Obs., vol. 17, pp. 213–242. Moscow State University, Moscow (1967)

    Google Scholar 

  21. Pirogov, S., Sinai, Ya.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25, 1185–1192 (1975) and 26, 39–49 (1976)

    Article  MathSciNet  Google Scholar 

  22. Privman, V. (ed.): Nonequilibrium Statistical Mechanics in One Dimension. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  23. Shubert, B.: A flow-graph formula for the stationary distribution of a Markov chain. IEEE Trans. Syst. Man Cybern. 5, 565 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sinai, Ya.: Theory of Phase Transitions, 1st edn. Pergamon, Elmsford (1982)

    MATH  Google Scholar 

  25. Schmittmann, B., Zia, R.K.P.: In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 17. Academic Press, London (1995)

    Google Scholar 

  26. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. Phase Transit. Crit. Phenom. 19, 1–251 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We very much thank Karel Netočný for the many discussions on this topic. In particular, WOKdG is grateful for the hospitality at the Institute of Physics, Academy of Sciences in Prague. We would also like to thank Jacek Miekisz for sharing his alternative and more direct proof of Theorem 6.1. We are also grateful to two referees for numerous improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winny O’Kelly de Galway.

Appendices

Appendix A: Kirchhoff Formula

A useful representation of the stationary distribution is in terms of the Kirchhoff formula [2, 17, 19] and [23]

$$ \rho(x)=\frac{W(x)}{\sum_y W(y)}, \quad W(x)=\sum_{\mathcal{T}}w(\mathcal{T}_x) $$
(25)

in which the last sum runs over all spanning trees in the graph \(\mathcal{G}\) and \(\mathcal{T}_{x}\) denotes the in-tree to x defined for any tree \(\mathcal{T}\) and state x by orienting every edge in \(\mathcal{T}\) towards x; its weight \(w(\mathcal{T}_{x})\) is

$$ w(\mathcal{T}_x):=\prod_{b\in\mathcal{T}_x} k(b) $$
(26)

i.e., the product of transition rates k(b)=k(y,z) over all oriented edges b≡(y,z) in the in-tree \(\mathcal{T}_{x}\). (To simplify notation, we identify the graph (see Fig. 4) with the set of its edges. We refer to [2] for the necessary elements of graph theory.)

Fig. 4
figure 4

A graph consisting of 4 states where the collection of red (thick) arrows is one of the possible in-trees \(\mathcal{T}_{x}\). The collection of black (dashed) arrows indicate other possible transitions on the graph G

Appendix B: Matrix Calculation

One can easily check from DE=D+EED that for all n≥0

$$ DE^{n}=(E+1)^nD+E(E+1)^n-E^{n+1} = D + \sum_{i,k} c_{ik} E^i D^k $$
(27)

for positive coefficients c ik . Similarly for m≥0

$$ D^mE=E(1+D)^m+D(1+D)^m-D^{m+1} = E + \sum_{i,k} f_{ik} E^i D^k $$
(28)

for positive coefficients f ik . Therefore,

$$\begin{aligned} \langle W\vert D W_{D,E} E\vert V \rangle =&\sum _{k,l}c_{k,l} \langle W\vert D E^k D^l E\vert V\rangle \\ =&\sum_{k,l}c_{k,l} \langle W \vert\bigl( (E+1)^kD+E(E+1)^k-E^{k+1} \bigr) \\ & {}\times \bigl(E(1+D)^l+D(1+D)^l-D^{l+1} \bigr)\vert V\rangle \\ \cong& \biggl(c_{0,0} \biggl(\frac{1}{\alpha(\beta)}+\frac{1}{\sigma(\beta)} \biggr)+O\bigl(e^{-2\beta}\bigr) \biggr)\langle W\vert V\rangle \end{aligned}$$
(29)

where the third equality follows from retaining only the lowest order terms in (27), (28).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maes, C., O’Kelly de Galway, W. A Low Temperature Analysis of the Boundary Driven Kawasaki Process. J Stat Phys 153, 991–1007 (2013). https://doi.org/10.1007/s10955-013-0878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0878-6

Keywords

Navigation