Skip to main content
Log in

Clustering of Periodic Orbits and Ensembles of Truncated Unitary Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In present article we consider a combinatorial problem of counting and classification of periodic orbits in dynamical systems on an example of the baker’s map. Periodic orbits of a chaotic system can be organized into a set of clusters, where orbits from a given cluster traverse approximately the same points of the phase space but in a different time-order.

We show that counting of cluster sizes in the baker’s map can be turned into a spectral problem for matrices from truncated unitary ensemble (TrUE). We formulate a conjecture of universality of the spectral edge in the eigenvalues distribution of TrUE and utilize it to derive asymptotics of the second moment of cluster distribution in the regime when both the orbit lengths and the parameter controlling closeness of the orbit actions tend to infinity. The result obtained allows to estimate the size of average cluster for various numbers of encounters in periodic orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In particular, if n is a prime number there are only two non-prime periodic orbits. They correspond to sequences of all zeroes or ones, respectively.

  2. The rescaling of n by the factor 2n is equivalent to multiplication of each eigenvalue λ i (ϕ) by \(\sqrt{2}\). Note, that this rescaling only shifts the edge of the spectrum of matrices \({\mathcal{Q}}(\boldsymbol{\phi})\) to 1.

References

  1. Haake, F.: Quantum Signatures of Chaos, 2nd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  2. Sieber, M., Richter, K.: Phys. Scr. T 90, 128 (2001)

    Article  ADS  Google Scholar 

  3. Müller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Phys. Rev. Lett. 93, 014103 (2004)

    Article  ADS  Google Scholar 

  4. Müller, S., Heusler, S., Braun, P., Haake, F., Altland, A.: Phys. Rev. E 72, 046207 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, New York (1992)

    Book  MATH  Google Scholar 

  6. Balazs, N.L., Voros, A.: Ann. Phys. 190, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Saraceno, M., Voros, A.: Physica D 79, 206 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  8. Gutkin, B., Osipov, V.Al.: Nonlinearity 26, 177 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Pollicott, M., Sharp, R.: Invent. Math. 163, 1 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Sharp, R.: Geom. Dedic. 149, 177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zyczkowski, K., Sommers, H.-J.: J. Phys. A, Math. Phys. 33, 2045 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Khoruzhenko, B.A., Sommers, H.-J., Zyczkowski, K.: Phys. Rev. E 82, 040106(R) (2010)

    Article  MathSciNet  ADS  Google Scholar 

  13. de Bruijn, N.G.: Proc. K. Ned. Akad. Wet. 49, 758 (1946)

    MATH  Google Scholar 

  14. Good, I.J.: J. Lond. Math. Soc. 21, 167 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gavish, U., Smilansky, U.: J. Phys. A, Math. Theor. 40, 10009 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Tanner, G.: J. Phys. A 33, 3567 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Berkolaiko, G.: Quantum star graphs and related systems. PhD thesis, University of Bristol (2000)

  18. Smilansky, U., Verdene, B.: J. Phys. A, Math. Theor. 36, 3525 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Bogomolny, E.: J. Phys. A, Math. Theor. 43, 335102 (2010)

    Article  MathSciNet  Google Scholar 

  20. Gutkin, B., Osipov, V.Al.: J. Stat. Phys. 143, 72 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Gutkin, B., Osipov, V.Al.: arXiv:1308.2356 (2013)

  22. Wei, Y., Fyodorov, Y.V.: J. Phys. A, Math. Theor. 41, 502001 (2008)

    Article  MathSciNet  Google Scholar 

  23. Fyodorov, Y.V., Sommers, H.-J.: JETP Lett. 72, 422 (2000)

    Article  ADS  Google Scholar 

  24. Fyodorov, Y.V., Sommers, H.-J.: J. Phys. A 36, 3303 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank S. Kumar for valuable discussions and help with the derivation of Eqs. (4.3), (4.4). V.O. thanks Prof. T. Guhr for hospitality during his stay in Duisburg-Essen University. Financial support by the SFB/TR12 and Gu 1208/1-1 research grant of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Osipov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutkin, B., Osipov, V. Clustering of Periodic Orbits and Ensembles of Truncated Unitary Matrices. J Stat Phys 153, 1049–1064 (2013). https://doi.org/10.1007/s10955-013-0859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0859-9

Keywords

Navigation