Skip to main content
Log in

Coulomb Scattering in the Massless Nelson Model I. Foundations of Two-Electron Scattering

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We construct two-electron scattering states and verify their tensor product structure in the infrared-regular massless Nelson model. The proof follows the lines of Haag-Ruelle scattering theory: Scattering state approximants are defined with the help of two time-dependent renormalized creation operators of the electrons acting on the vacuum. They depend on the ground state wave functions of the (single-electron) fiber Hamiltonians with infrared cut-off. The convergence of these approximants as t→∞ is shown with the help of Cook’s method combined with a non-stationary phase argument. The removal of the infrared cut-off in the limit t→∞ requires sharp estimates on the derivatives of these ground state wave functions w.r.t. electron and photon momenta, with mild dependence on the infrared cut-off. These key estimates, which carry information about the localization of the electrons in space, are obtained in a companion paper with the help of iterative analytic perturbation theory. Our results hold in the weak coupling regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We set κ=1 to simplify the proofs of Proposition 1.1 and Theorem 1.2, given in the companion paper [12]. In the present paper we will write κ explicitly.

References

  1. Abdesselam, A., Hasler, D.: Analyticity of the ground state energy for massless Nelson models. Commun. Math. Phys. 310, 511–536 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Albeverio, S.: Scattering theory in a model of quantum fields. I. J. Math. Phys. 14, 1800–1816 (1973)

    Article  ADS  Google Scholar 

  3. Albeverio, S.: Scattering theory in a model of quantum fields II. Helv. Phys. Acta 45, 303–321 (1972)

    Google Scholar 

  4. Bach, V., Chen, T., Fröhlich, J., Sigal, I.M.: The renormalized electron mass in non-relativistic quantum electrodynamics. J. Funct. Anal. 243, 426–535 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, T., Fröhlich, J., Pizzo, A.: Infraparticle scattering states in non-relativistic QED: I. The Bloch-Nordsieck paradigm. Commun. Math. Phys. 294, 761–825 (2010)

    Article  ADS  MATH  Google Scholar 

  6. Chen, T., Fröhlich, J., Pizzo, A.: Infraparticle scattering states in non-relativistic QED: II. Mass shell properties. J. Math. Phys. 50, 012103–012134 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. De Roeck, W., Kupiainen, A.: Approach to ground state and time-independent photon bound for massless spin-boson models. Ann. Henri Poincaré 14(2), 253–311 (2013)

    Article  ADS  MATH  Google Scholar 

  8. De Roeck, W., Griesemer, M., Kupiainen, A.: Asymptotic completeness for the massless spin-boson model. Preprint: arXiv:1301.2357

  9. Dereziński, J., Gérard, C.: Asymptotic completeness in quantum field theory. Massive Pauli-Fierz Hamiltonians. Rev. Math. Phys. 11, 383–450 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dereziński, J., Gérard, C.: Scattering theory of infrared divergent Pauli-Fierz Hamiltonians. Ann. Henri Poincaré 5, 523–577 (2004)

    Article  ADS  MATH  Google Scholar 

  11. Dybalski, W.: Haag-Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Dybalski, W., Pizzo, A.: Coulomb scattering in the massless Nelson model II. Regularity of ground states. Preprint: arXiv:1302.5012

  13. Faupin, J., Sigal, I.M.: On Rayleigh scattering in non-relativistic quantum electrodynamics. Preprint: arXiv:1211.0268

  14. Fröhlich, J.: Unpublished notes

  15. Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. Henri Poincaré, a Phys. Théor. 19, 1–103 (1973)

    Google Scholar 

  16. Fröhlich, J.: Existence of dressed one electron states in a class of persistent models. Fortschr. Phys. 22, 158–198 (1974)

    Article  Google Scholar 

  17. Fröhlich, J., Pizzo, A.: Renormalized electron mass in non-relativistic QED. Commun. Math. Phys. 294, 439–470 (2010)

    Article  ADS  MATH  Google Scholar 

  18. Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic electromagnetic fields in models of quantum-mechanical matter interacting with the quantized radiation field. Adv. Math. 164, 349–398 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic completeness for Rayleigh scattering. Ann. Henri Poincaré 3, 107–170 (2002)

    Article  ADS  MATH  Google Scholar 

  20. Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic completeness for Compton scattering. Commun. Math. Phys. 252, 415–476 (2004)

    Article  ADS  MATH  Google Scholar 

  21. Haag, R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112, 669–673 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Hübner, M., Spohn, H.: Radiative decay: nonperturbative approaches. Rev. Math. Phys. 7, 363–387 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Könenberg, M., Matte, O.: The mass-shell in the semi-relativistic Pauli-Fierz model. Preprint: arXiv:1204.5123

  24. Pizzo, A.: One-particle (improper) states in Nelson’s massless model. Ann. Henri Poincaré 4, 439–486 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Pizzo, A.: Scattering of an infraparticle: the one particle sector in Nelson’s massless models. Ann. Henri Poincaré 4, 553–606 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness. Academic Press, San Diego (1980)

    Google Scholar 

  27. Ruelle, D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147–163 (1962)

    MATH  MathSciNet  Google Scholar 

  28. Spohn, H.: Asymptotic completeness for Rayleigh scattering. J. Math. Phys. 38, 2281–2296 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Spohn, H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Fröhlich for the unpublished notes that have inspired this paper. We also thank the Hausdorff Research Institute for Mathematics, Bonn, for hospitality at final stages of this work. W.D. acknowledges hospitality of the University of California Davis, where this collaboration started.

A.P. is supported by the NSF grant #DMS-0905988. W.D. is supported by the German Research Foundation (DFG) within the grant SP181/25–2 and stipend DY107/1–1. Moreover, W.D. would like to acknowledge the support of the Danish Council for Independent Research, grant no. 09-065927 “Mathematical Physics”, and of the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Dybalski.

Additional information

Dedicated to Herbert Spohn on the occasion of his 65th birthday.

With gratitude for all he taught us about the dynamics of matter and radiation.

Appendices

Appendix A: Domain Questions

Lemma A.1

Let \(n\in \mathbb {N}\). There exist constants 0≤a<1 and b≥0 s.t. for any \(\varPsi\in \mathcal{C}^{(n)}\) there holds the bound

$$ \bigl\| H_{\mathrm{I}}^{(n)}\varPsi\bigr\| \leq a \bigl\| H_{\mathrm {fr}}^{(n)} \varPsi\bigr\| +b\|\varPsi\|, $$
(A.1)

where \(H_{\mathrm{I}}^{(n)}=H_{\mathrm{I}}|_{\mathcal{C}^{(n)}}\), \(H_{\mathrm {fr}}^{(n)}=H_{\mathrm {fr}}|_{\mathcal{C}^{(n)}}\).

Proof

Let us use the form of the interaction Hamiltonian appearing in formula (1.33). We have \(H_{\mathrm{I}}^{(n)}=H_{\mathrm{I}}^{\mathrm{a}, (n)}+H_{\mathrm{I}}^{\mathrm{c}, (n)}\), where

$$ H_{\mathrm{I}}^{\mathrm{a}, (n)}:=\sum_{i=1}^n \int d^3k v_{\overline {\alpha }}(k) e^{ikx_i}a(k) $$
(A.2)

and \(H_{\mathrm{I}}^{\mathrm{c}, (n)}=(H_{\mathrm{I}}^{\mathrm{a}, (n)})^{*}\). Let us set \(C_{n}(k):= \sum_{l=1}^{n} e^{ikx_{l}}\) and compute for some \(\varPsi \in \mathcal{C}^{(n)}\)

$$\begin{aligned} \bigl\| H_{\mathrm{I}}^{\mathrm{a},(n)}\varPsi\bigr\| \leq& \int d^3k v_{\overline {\alpha }}(k) \bigl\| C_n(k) a(k)\varPsi \bigr\| \leq n \int d^3k v_{\overline {\alpha }}(k) \bigl\| a(k)\varPsi\bigr\| \\ \leq& n \bigl\| \omega ^{-1/2}v_{\overline {\alpha }}\bigr\| _2\langle \varPsi,H_{\mathrm {f}} \varPsi \rangle ^{ \frac {1}{2}}\leq \frac {1}{4}\|H_{\mathrm {fr}}\varPsi \|+n^2\bigl\| \omega ^{-1/2}v_{\overline {\alpha }}\bigr\| _2^2\|\varPsi \|, \end{aligned}$$
(A.3)

where in the last step we anticipate that (A.1) should hold with 0<a<1.

Let us now consider the creation part of \(H_{\mathrm{I}}^{(n)}\). Making use of the canonical commutation relations, we get

$$\begin{aligned} \bigl\| H_{\mathrm{I}}^{\mathrm{c},(n)}\varPsi\bigr\| ^2 =&\int d^3k_1d^3k_2 v_{\overline {\alpha }}(k_1)v_{\overline {\alpha }}(k_2) \bigl\langle C_n(k_1)^*a^*(k_1) \varPsi,C_n(k_2)^*a^*(k_2)\varPsi\bigr\rangle \\ \leq& \bigl\| H_{\mathrm{I}}^{\mathrm{a},(n)}\varPsi\bigr\| ^2+ n^2 \|v_{\overline {\alpha }}\|_2^2 \|\varPsi\|^2, \end{aligned}$$
(A.4)

which, together with (A.3), concludes the proof. □

Lemma A.2

The domain \(\mathcal{D}\), defined in (2.19), is contained in the domains of H, H e, H f, \(H_{\mathrm{I}}^{\mathrm{a}/\mathrm{c}}\), \(\check{H}_{\mathrm{I},\sigma }\) and \(\hat{\eta}^{*}(h)\), \(h\in C_{0}^{2}(S)\). Moreover, these operators leave \(\mathcal{D}\) invariant.

Proof

Let \(\varPsi_{l}^{r_{1},r_{2}}\) be a vector of the form (2.17). Then

$$\begin{aligned} & \hat{\eta}^*_{\sigma }(h)\varPsi_l^{r_1,r_2} \\ &\quad {}=\sum_{m,m'}\frac{1}{\sqrt{m'!}} \frac{1}{\sqrt{m!}} \int d^3p' d^{3l}p d^{3m'}k' d^{3m}k F'_{1,m'} \bigl(p';k'\bigr)F_{l,m}(p;k) \\ &\qquad {}\times \eta ^*\bigl(p'\bigr) \eta ^*(p)^l a^*\bigl(k'\bigr)^{m'} a^*(k)^m\varOmega \\ &\quad {}= \sum_{\tilde{m}=0}^{\infty}\frac{1}{\sqrt{\tilde{m}!}} \int d^{3(l+1)}\tilde{p} d^{3\tilde{m}}\tilde{k} \tilde{F}_{\tilde{m}}(\tilde{p};\tilde{k}) \eta ^*(\tilde{p})^{l+1} a^*(\tilde{k})^{\tilde{m}}\varOmega , \end{aligned}$$
(A.5)

where \(F'_{1,m'}(p',k'):= h(p'+ \underline{k}') f^{m'}_{p'+ \underline{k},\sigma }(k')\), \(\tilde{m}:=m+m'\), \(\tilde{k}:=(k,k')\), \(\tilde{p}:=(p,p')\) and

$$ \tilde{F}_{\tilde{m}}(\tilde{p};\tilde{k})=\sum_{m=0}^{\tilde{m}} \frac{ \sqrt{\tilde{m}!} }{ \sqrt{(\tilde{m}-m)!} \sqrt{m!} }\bigl(F'_{1,(\tilde{m}-m) }F_{l,m} \bigr)_{\mathrm {sym} } (\tilde{p};\tilde{k}), $$
(A.6)

where the symmetrization is performed in the \(\tilde{p}\) and \(\tilde{k}\) variables separately. By Theorem 1.2, \(F'_{1,m'}\) satisfies the bound (2.18), and therefore

$$ \|\tilde{F}_{\tilde{m}}\|_2\leq\frac{c^{\tilde{m}}}{\sqrt{\tilde{m}!}}, $$
(A.7)

for some constant c. Hence \(\hat{\eta}^{*}_{\sigma }(h)\varPsi_{l}^{r_{1},r_{2}}\) is well defined and belongs to \(\mathcal{D}\).

Next, we note that

$$\begin{aligned} &H_{\mathrm{e}}\varPsi_l^{r_1,r_2}=\sum _{m=0}^{\infty}\frac{1}{\sqrt{m!}}\int d^{3l}p d^{3m}k\bigl(\varOmega (p_1)+\cdots+\varOmega (p_l) \bigr) F_{l,m}(p;k)\eta ^*(p)^la^*(k)^m\varOmega , \\ \end{aligned}$$
(A.8)
$$\begin{aligned} &H_{\mathrm {f}}\varPsi_l^{r_1,r_2}=\sum _{m=0}^{\infty}\frac{1}{\sqrt{m!}}\int d^{3l}p d^{3m}k \bigl(\omega (k_1)+\cdots+\omega (k_m) \bigr) F_{l,m}(p;k)\eta ^*(p)^la^*(k)^m\varOmega . \end{aligned}$$
(A.9)

Due to the support properties of F l,m (p;k) these vectors are well defined and belong to \(\mathcal{D}\).

Finally, we consider the operators \(H_{\mathrm{I}}^{\mathrm{a}/\mathrm{c}}\). We recall that the interaction Hamiltonian restricted to \(\mathcal {H}^{(l)}\) has the form

$$ H_{\mathrm{I}}^{(l)}:=\sum_{i=1}^l \int d^3k v_{\overline {\alpha }}(k) \bigl( e^{ikx_i}a(k)+e^{-ikx_i}a^*(k) \bigr) $$
(A.10)

and we express \(\varPsi_{l}^{r_{1},r_{2}}\) in terms of its m-photon components, i.e.,

$$ \bigl\{ \varPsi_l^{r_1,r_2}\bigr\} ^{(l,m)}(p_1, \ldots, p_l;k_1,\ldots ,k_m)=F_{l,m}(p_1, \ldots, p_l;k_1,\ldots, k_m). $$
(A.11)

Now we can write

$$\begin{aligned} &\bigl(H_{\mathrm{I}}^{\mathrm{a}}\varPsi_l^{r_1,r_2} \bigr)^{(l,m)}(p_1,\ldots, p_l; k_1,\ldots, k_m) \\ &\quad {}=\sqrt{m+1}\int d^3k v_{\overline {\alpha }}(k)\sum_{i=1}^l \bigl(\varPsi _l^{r_1,r_2}\bigr)^{(l,m+1)} \\ &\qquad {}\times (p_1, \ldots, p_i-k,\ldots, p_l; k, k_1,\ldots, k_m). \end{aligned}$$
(A.12)

It is easy to see that for some constant c, independent of m,

$$ \bigl\| \bigl(H_{\mathrm{I}}^{\mathrm{a}}\varPsi_l^{r_1,r_2} \bigr)^{(l,m)}\bigr\| _2\leq\frac{c^m}{\sqrt{m!}}. $$
(A.13)

Similarly, we obtain that

$$\begin{aligned} &\bigl(H_{\mathrm{I}}^{\mathrm{c}}\varPsi_l^{r_1,r_2} \bigr)^{(l,m)}(p_1,\ldots, p_l; k_1,\ldots, k_m) \\ &\quad {}=\frac{1}{\sqrt{m}}\sum_{i=1}^m\sum _{j=1}^lv_{\overline {\alpha }}(k_i) \bigl(\varPsi _l^{r_1,r_2}\bigr)^{(l,m-1)} \\ &\qquad {}\times (p_1, \ldots,p_j+k_i,\ldots, p_l; k_1,\ldots ,k_{i_*},\ldots, k_m), \end{aligned}$$
(A.14)

where \(k_{i_{*}}\) means omission of the i-th variable. This gives, again, a bound of the form (A.13). Since the case of \(\check{H}_{\mathrm{I},\sigma }\) is analogous, this concludes the proof. □

Appendix B: Fock Space Combinatorics

In Lemmas B.1, B.3 and B.5 below we deal first with \(G_{i,m}, G_{i,m}', F_{n,m}, F'_{n,m}\) of Schwartz class and then extend the results to square integrable functions using Theorem X.44 of [26].

Lemma B.1

Let \(G_{m}, G_{m}'\in L^{2}(\mathbb {R}^{3}\times \mathbb {R}^{3m})\) be symmetric in their photon variables, see (1.68). Let us define as operators on \(\mathcal{C}\)

$$ B_m^*(G_m):=\int d^3p d^{3m}k G_m(p;k) \eta ^*(p- \underline{k})a^*(k)^m $$
(B.1)

and \(B_{m}(G_{m}):=(B_{m}^{*}(G_{m}))^{*}\). Then there holds the identity

$$ \bigl\langle \varOmega , B_m\bigl(G_m'\bigr) B_m^*(G_m) \varOmega \bigr\rangle =m!\int d^3p d^{3m}k \overline{G}_{m}'(p; k) G_{m}(p; k ) . $$
(B.2)

Proof

We compute

$$\begin{aligned} &\bigl\langle \varOmega , B_m\bigl(G_m'\bigr) B_m^*(G_m) \varOmega \bigr\rangle \\ &\quad {}=\int d^3p d^{3m}k\int d^3p' d^{3m}k' G_m(p;k) \overline{G}_{m}' \bigl(p'; k'\bigr) \\ &\qquad {}\times \bigl\langle \varOmega , a\bigl(k' \bigr)^m\eta \bigl(p'- \underline{k}'\bigr) \eta ^*(p- \underline{k})a^*(k)^m\varOmega \bigr\rangle \\ &\quad {}=\int d^3p d^{3m}k\int d^3p' d^{3m}k' G_m(p;k) \overline{G}_{m}' \bigl(p'; k'\bigr) \delta \bigl(p- \underline{k}-p'+ \underline{k}'\bigr) \\ &\qquad {}\times \bigl\langle \varOmega , a\bigl(k'\bigr)^m a^*(k)^m\varOmega \bigr\rangle \\ &\quad {}=\int d^3p d^{3m}k\int d^{3m}k' G_m(p;k) \overline{G}_{m}'\bigl(p- \underline{k}+\underline{k}'; k'\bigr) \bigl\langle \varOmega , a\bigl(k' \bigr)^m a^*(k)^m\varOmega \bigr\rangle \\ &\quad {}= \int d^3p d^{3m}k\int d^{3m}k' G_m(p;k) \overline{G}_{m}'\bigl(p- \underline{k}+\underline{k}'; k'\bigr) \sum_{\rho\in S_m} \prod_{i=1}^m\delta \bigl(k_{\rho(i)}-k'_i \bigr) \\ &\quad {}= m!\int d^3p d^{3m}k G_m(p;k) \overline{G}_{m}'(p; k), \end{aligned}$$
(B.3)

where S m is the set of all permutations of an m-element set and in the last step we exploited the fact that \(G_{m}'\) is symmetric in its photon variables. □

Lemma B.2

Let \(n,m,\tilde{n},\tilde{m}\in \mathbb {N}_{0}\) be s.t. \(n+m=\tilde{n}+\tilde{m}\). Let us choose

$$\begin{aligned} &r=(r_1,\ldots,r_n)\in \mathbb {R}^{3n}, \qquad k=(k_1,\ldots, k_m)\in \mathbb {R}^{3m}, \end{aligned}$$
(B.4)
$$\begin{aligned} &\tilde{r}=(\tilde{r}_1,\ldots, \tilde{r}_{\tilde{n}})\in \mathbb {R}^{3\tilde{n}}, \qquad \tilde{k}=(\tilde{k}_1,\ldots,\tilde{k}_{\tilde{m}} )\in \mathbb {R}^{3\tilde{m}} \end{aligned}$$
(B.5)

and define the sets

$$\begin{aligned} &C_n:=\{1,\ldots, n\}, \qquad C_n':= \{n+1,\ldots,n+m\}, \end{aligned}$$
(B.6)
$$\begin{aligned} &C_{\tilde{n}}:=\{1,\ldots,\tilde{n}\}, \qquad C_{\tilde{n}}':= \{\tilde{n}+1,\ldots ,\tilde{n}+ \tilde{m}\}. \end{aligned}$$
(B.7)

(Note that \(C_{n}'\) is the complement of C n in {1,…,n+m}. Similarly for \(C_{\tilde{n}}'\)). Let S m+n be the set of permutations of an m+n element set. For any ρS m+n we introduce the following notation:

$$\begin{aligned} &\hat{r} :=(r_i)_{(i,\rho (i))\in C_n\times C_{\tilde{n}}}, \qquad \check{r} :=(r_i)_{(i,\rho (i))\in C_n\times C_{\tilde{n}}' }, \end{aligned}$$
(B.8)
$$\begin{aligned} &\hat{k} :=(k_{i-n})_{(i,\rho (i))\in C_n'\times C_{\tilde{n}}' }, \qquad \check{k} :=(k_{i-n})_{(i,\rho (i))\in C_n'\times C_{\tilde{n}} }, \end{aligned}$$
(B.9)

so that \(r=(\hat{r} ,\check{r} )\), \(k=(\hat{k} ,\check{k} )\). Similarly,

$$\begin{aligned} &\hat{\tilde{r}}:=(\tilde {r}_{\rho (i)})_{(i,\rho (i))\in C_n\times C_{\tilde{n}}},\qquad\check{\tilde{r}}:=(\tilde{r}_{\rho (i)})_{(i,\rho (i))\in C_n'\times C_{\tilde{n}} }, \end{aligned}$$
(B.10)
$$\begin{aligned} &\hat{\tilde{k}}:=(\tilde{k}_{\rho (i)-\tilde{n}})_{(i,\rho (i))\in C_n'\times C_{\tilde{n}}' },\qquad\check{\tilde{k}}:=(\tilde{k}_{\rho (i)-\tilde{n} })_{(i,\rho (i))\in C_n\times C_{\tilde{n}}' }, \end{aligned}$$
(B.11)

so that \(\tilde{r}=(\hat{\tilde{r}}, \check{\tilde{r}})\) and \(\tilde{k}=(\hat{\tilde{k}}, \check{\tilde{k}})\). (If \(\{ i\,|\, (i,\rho (i))\in C_{n}\times C_{\tilde{n}}\} =\emptyset\) then we say that \(\hat{r} \) is empty, and analogously for other collections of photon variables introduced above). Finally, we define

$$\begin{aligned} \delta (\hat{r} -\hat{\tilde{r}}) :=&\prod_{(i,\rho (i))\in C_n\times C_{\tilde{n}} } \delta (r_i-\tilde{r}_{\rho (i)}), \end{aligned}$$
(B.12)
$$\begin{aligned} \delta (\check{r} -\check{\tilde{k}}) :=&\prod_{(i,\rho (i))\in C_n\times C_{\tilde{n}}' } \delta (r_i-\tilde{k}_{\rho (i)-\tilde{n}} ), \end{aligned}$$
(B.13)
$$\begin{aligned} \delta (\check{k} -\check{\tilde{r}}) :=&\prod_{(i,\rho (i))\in C_n'\times C_{\tilde{n}} } \delta (k_{i-n}-\tilde{r}_{\rho (i)} ), \end{aligned}$$
(B.14)
$$\begin{aligned} \delta (\hat{k} -\hat{\tilde{k}} ) :=&\prod_{(i,\rho (i))\in C_n'\times C_{\tilde{n}}' } \delta (k_{i-n}-\tilde{k}_{\rho (i)-\tilde{n}} ). \end{aligned}$$
(B.15)

Then there holds

$$\begin{aligned} \bigl\langle \varOmega , a(\tilde{r})^{\tilde{n}} a(\tilde{k})^{\tilde{m}} a^*(r)^{n} a^*(k)^{m}\varOmega \bigr\rangle =\sum _{\rho \in S_{m+n}} \delta (\hat{r} -\hat{\tilde{r}})\delta (\check{r} -\check{\tilde{k}})\delta (\check{k} - \check{\tilde{r}})\delta (\hat{k} -\hat{\tilde{k}} ). \end{aligned}$$
(B.16)

Proof

Let (v 1,…,v n+m )=(r 1,…,r n ,k 1,…,k m ) and \((\tilde{v}_{1},\ldots,\tilde{v}_{n+m})=(\tilde{r}_{1},\ldots,\tilde{r}_{\tilde{n}}, \tilde{k}_{1},\ldots, \tilde{k}_{\tilde{m}})\). There holds

$$\begin{aligned} & \bigl\langle \varOmega , a(\tilde{r})^{\tilde{n}} a(\tilde{k})^{\tilde{m}} a^*(r)^{n} a^*(k)^{m}\varOmega \bigr\rangle \\ &\quad {} =\sum _{\rho \in S_{m+n}}\prod_{j=1}^{m+n} \delta (v_{j}-\tilde{v}_{\rho (j)}) \\ &\quad {}=\sum_{\rho \in S_{m+n}} \delta (r_1-\tilde{v}_{\rho (1)} )\cdots \delta (r_n-\tilde{v}_{\rho (n)}) \delta (k_1-\tilde{v}_{\rho (n+1)})\cdots \delta (k_m-\tilde{v}_{\rho (n+m)}) \end{aligned}$$
(B.17)
$$\begin{aligned} &\quad {}=\sum_{\rho \in S_{m+n}} \biggl(\prod _{(i, \rho (i))\in C_n\times C_{\tilde{n}}} \delta (r_i-\tilde{r}_{\rho (i)} ) \biggr) \biggl(\prod_{(i,\rho (i))\in C_n\times C_{\tilde{n}}' } \delta (r_i-\tilde{k}_{\rho (i)-\tilde{n}} ) \biggr) \\ &\qquad {}\times \biggl(\prod_{(i,\rho (i))\in C_n'\times C_{\tilde{n}} } \delta (k_{i-n}-\tilde{r}_{\rho (i)} ) \biggr) \biggl(\prod _{(i,\rho (i))\in C_n'\times C_{\tilde{n}}' } \delta (k_{i-n}-\tilde{k}_{\rho (i)-\tilde{n}} ) \biggr), \end{aligned}$$
(B.18)

which concludes the proof. □

Lemma B.3

Let \(F_{n,m}, F'_{n,m} \in L^{2}((\mathbb {R}^{3}\times \mathbb {R}^{3n})\times(\mathbb {R}^{3}\times \mathbb {R}^{3m}))\) be symmetric in the photon variables for any \(n,m\in \mathbb {N}\). Let us introduce the following operators on \(\mathcal{C}\)

$$ B^*_{n,m}(F_{n,m}):=\int d^3q d^3p \int d^{3n}r d^{3m}k F_{n,m}(q;r \,|\,p ; k) a^*(r)^{n}a^*(k)^m\eta ^*(p- \underline{k})\eta ^*(q- \underline{r}) $$
(B.19)

and set \(B_{n,m}(F_{n,m}):=(B^{*}_{n,m}(F_{n,m}))^{*}\). There holds

$$\begin{aligned} &\bigl\langle B_{\tilde{n},\tilde{m}}^*\bigl(F'_{\tilde{n},\tilde{m}}\bigr)\varOmega , B_{n,m}^*(F_{n,m})\varOmega \big\rangle \\ &\quad {}=\sum _{\rho \in S_{m+n}}\int d^3 q d^3p \int d^{3n}r d^{3m}k F_{n,m}(q;r \,|\,p; k) \\ &\qquad {}\times \bigl( \overline{F}_{\tilde{n},\tilde{m}}'(p- \underline {\hat{k}} + \underline {\hat{r}} ; \hat{r} , \check{k} \,|\,q+\underline {\hat{k}} - \underline {\hat{r}} ; \hat{k} , \check{r} ) \\ &\qquad {} + \overline{F}_{\tilde{n},\tilde{m}}'(q+ \underline {\check{k}} - \underline {\check{r}} ; \hat{r} , \check{k} \,|\,p- \underline {\check{k}} + \underline {\check{r}} ; \hat{k} , \check{r} ) \bigr) \end{aligned}$$
(B.20)

for any \(\tilde{n},\tilde{m}\in \mathbb {N}\) s.t. \(n+m=\tilde{n}+\tilde{m}\). Otherwise the expression on the l.h.s. is zero. Here S m+n is the set of permutations of an m+n element set and the notation \(\hat{k} \), \(\check{k} \), \(\hat{r} \), \(\check{r} \) is explained in Lemma B.2.

Proof

We compute the expectation value

$$\begin{aligned} &\bigl\langle B_{\tilde{n},\tilde{m}}^*\bigl(F'_{\tilde{n},\tilde{m}}\bigr)\varOmega , B_{n,m}^*(F_{n,m})\varOmega \bigr\rangle \end{aligned}$$
(B.21)
$$\begin{aligned} &\quad {}=\int d^3\tilde{q} d^3\tilde{p} d^3 q d^3p \int d^{3\tilde{n}}\tilde{r} d^{3\tilde{m}}\tilde{k} d^{3n}r d^{3m}k \overline{F}'_{\tilde{n},\tilde{m}}(\tilde{q}; \tilde{r} \,|\,\tilde{p}; \tilde{k}) F_{n,m}(q;r \,|\,p; k) \\ &\qquad {}\times \bigl( \delta (\tilde{q}-p+\tilde { \underline{k}}- \underline{r})+\delta (\tilde{q}- q-\tilde { \underline{r}}+\underline{r}) \bigr)\delta (\tilde{p}+\tilde{q}-p-q) \\ &\qquad {}\times \bigl\langle \varOmega , a(\tilde{r})^{\tilde{n}} a(\tilde{k})^{\tilde{m}} a^*(r)^{n} a^*(k)^{m}\varOmega \bigr\rangle . \end{aligned}$$
(B.22)

The last factor is non-zero only if \(\tilde{n}+\tilde{m}=n+m\). Moreover,

$$ \bigl\langle \varOmega , a(\tilde{r})^{\tilde{n}} a(\tilde{k})^{\tilde{m}} a^*(r)^{n} a^*(k)^{m}\varOmega \bigr\rangle = \sum _{\rho \in S_{m+n}}\delta (\hat{r} -\hat{\tilde{r}})\delta (\check{r} -\check{\tilde{k}})\delta (\check{k} - \check{\tilde{r}})\delta (\hat{k} -\hat{\tilde{k}} ), $$
(B.23)

where we made use of Lemma B.2. Thus the r.h.s. of (B.22) is a sum over ρS m+n of terms of the form:

$$\begin{aligned} &\int d^3\tilde{q} d^3\tilde{p} d^3 q d^3p \int d^{3n}r d^{3m}k \overline{F}'_{\tilde{n},\tilde{m}}( \tilde{q}; \hat{r} , \check{k} \,|\,\tilde{p}; \hat{k} , \check{r} ) F_{n,m}(q; r \,|\,p; k ) \\ &\qquad {}\times \delta (\tilde{p}+\tilde{q}-p-q) \bigl( \delta (\tilde{q}-p+\underline {\hat{k}} - \underline {\hat{r}} )+\delta (\tilde{q}- q- \underline {\check{k}} + \underline {\check{r}} ) \bigr) \\ &\quad {}=\int d^3 q d^3p \int d^{3n}r d^{3m}k F_{n,m}(q; r \,|\,p; k ) \bigl(\overline{F}_{\tilde{n},\tilde{m}}'(p- \underline {\hat{k}} + \underline {\hat{r}} ; \hat{r} , \check{k} \,|\,q+ \underline {\hat{k}} - \underline {\hat{r}} ; \hat{k} , \check{r} ) \\ &\qquad {}+ \overline{F}_{\tilde{n},\tilde{m}}'( q+ \underline {\check{k}} -\underline {\check{r}} ; \hat{r} , \check{k} \,|\,p- \underline {\check{k}} + \underline {\check{r}} ; \hat{k} , \check{r} ) \bigr) \end{aligned}$$
(B.24)

which concludes the proof. □

Lemma B.4

Let \(G_{1,m},G_{1,m}',G_{2,m}, G_{2,m}'\in L^{2}(\mathbb {R}^{3}\times \mathbb {R}^{3m})\) be symmetric in the photon variables for any \(m\in \mathbb {N}\). We define, as an operator on \(\mathcal{C}\),

$$ B_m^*(G_{i,m}):=\int d^3p d^{3m}k G_{i,m}(p;k) \eta ^*(p- \underline{k})a^*(k)^m $$
(B.25)

and set \(B_{m}(G_{i,m})=(B_{m}^{*}(G_{i,m}))^{*}\). There holds the identity

$$\begin{aligned} &\bigl\langle \varOmega , B_{\tilde{n}}\bigl(G_{1,\tilde{n}}' \bigr)B_{\tilde{m}}\bigl(G_{2,\tilde{m}}' \bigr)B_{n}^*(G_{1,n}) B_{m}^*(G_{2,m}) \varOmega \bigr\rangle \\ &\quad {}=\sum_{\rho \in S_{m+n}}\int d^3 q d^3p \int d^{3n}r d^{3m}k G_{1,n}(q; r) G_{2,m}(p; k)\phantom {444} \\ &\qquad {}\times \bigl(\overline{G}_{1,\tilde{n}}'(p- \underline {\hat{k}} + \underline {\hat{r}} ; \hat{r} , \check{k} ) \overline{G}_{2,\tilde{m}}'(q+ \underline {\hat{k}} - \underline {\hat{r}} ; \hat{k} , \check{r} ) \\ &\qquad {} +\overline{G}_{1,\tilde{n}}'( q+ \underline {\check{k}} - \underline {\check{r}} ; \hat{r} , \check{k} ) \overline{G}_{2,\tilde{m}}'(p- \underline {\check{k}} + \underline {\check{r}} ; \hat{k} , \check{r} ) \bigr), \end{aligned}$$
(B.26)

for any \(n,\tilde{n},\tilde{m}\in \mathbb {N}\) s.t. \(n+m=\tilde{n}+\tilde{m}\). Otherwise the expression on the l.h.s. is zero. Here S m+n is the set of permutations of an m+n element set and the notation \(\hat{k} , \check{k} , \hat{r} , \check{r} \) is explained in Lemma B.2.

Proof

Follows immediately from Lemma B.3. □

Lemma B.5

Let \(G_{1,m},G_{2,m} \in L^{2}(\mathbb {R}^{3}\times \mathbb {R}^{3m})\) be supported in \(\mathbb {R}^{3}\times\{ k\in \mathbb {R}^{3}\,|\, |k|\geq \sigma \}^{\times m}\) and symmetric in their photon variables. There holds the identity

$$\begin{aligned} &\bigl\langle \varOmega , B_{ \tilde{n}}(G_{2,\tilde{n}}) \bigl(\check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} \bigr)^* B_{ \tilde{m}}(G_{1,\tilde{m}})B_{n}^*(G_{1,n}) \check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} B_{m}^*(G_{2,m})\varOmega \bigr\rangle \\ &\quad {}=\sum_{\rho \in S_{m+n}}\int d^3 q d^3p \int d^{3n}r d^{3m}k G_{1,n}(q;r) G_{2,m}(p; k) \\ &\qquad {}\times \biggl( \int d^3\tilde{p} \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{p})^2 \overline{G}_{2,\tilde{n}} (p-\tilde{p}- \underline {\hat{k}} + \underline {\hat{r}} ;\hat{r} ,\check{k} ) \overline{G}_{1,\tilde{m}} (\tilde{p}+q+ \underline {\hat{k}} - \underline {\hat{r}} ; \hat{k} ,\check{r} ) \\ &\qquad {}+ \bigl\| \check {v}_{\overline {\alpha }} ^{\sigma }\bigr\| _2^2 \overline{G}_{2,\tilde{n}} (q+\underline {\check{k} }-\underline {\check{r} };\hat{r} ,\check{k} ) \overline{G}_{1,\tilde{m}} (p-\underline {\check{k} }+\underline {\check{r} }; \hat{k} ,\check{r} ) \biggr) \end{aligned}$$
(B.27)

for \(m+n= \tilde{m}+ \tilde{n}\), otherwise the l.h.s. is zero. Here S m+n is the set of permutations of an m+n element set and the notation \(\hat{k} , \check{k} , \hat{r} , \check{r} \) is explained in Lemma B.2.

Proof

We compute the expectation value

$$\begin{aligned} &\bigl\langle \varOmega , B_{ \tilde{n}}(G_{2,\tilde{n}}) \bigl(\check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} \bigr)^* B_{ \tilde{m}}(G_{1,\tilde{m}})B_{n}^*(G_{1,n}) \check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} B_{m}^*(G_{2,m})\varOmega \bigr\rangle \\ &\quad {}=\int d^3\tilde{u} d^3\tilde{w} d^3u d^3w\int d^3\tilde{q} d^3\tilde{p} d^3 q d^3p \int d^{3 \tilde{n}}\tilde{r} d^{3 \tilde{m}}\tilde{k} d^{3n}r d^{3m}k \\ &\qquad {}\times \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{w}) \check {v}_{\overline {\alpha }} ^{\sigma }(w) \overline{G}_{2,\tilde{n}} (\tilde{q};\tilde{r}) \overline{G}_{1,\tilde{m}} (\tilde{p}; \tilde{k}) G_{1,n}(q;r) G_{2,m}(p; k) \\ &\qquad {}\times \bigl\langle \varOmega , \eta (\tilde{p}-\tilde { \underline{k}}) \eta ^*(\tilde{u}) \eta (\tilde{u}-\tilde{w}) \eta ( \tilde{q}-\tilde { \underline{r}}) \eta ^*(q- \underline{r})\eta ^*(u-w)\eta (u)\eta ^*(p-\underline{k}) \varOmega \bigr\rangle \\ &\qquad {}\times \bigl\langle \varOmega , a(\tilde{r})^{ \tilde{n}}a(\tilde{w}) a(\tilde{k})^{ \tilde{m}} a^*(r)^{n} a^*(w) a^*(k)^{m}\varOmega \bigr\rangle . \end{aligned}$$
(B.28)

We note that

$$\begin{aligned} &\bigl\langle \varOmega , \eta (\tilde{p}-\tilde { \underline{k}}) \eta ^*(\tilde{u}) \eta (\tilde{u}-\tilde{w}) \eta (\tilde{q}- \tilde { \underline{r}}) \eta ^*(q- \underline{r}) \eta ^*(u-w)\eta (u) \eta ^*(p- \underline{k}) \varOmega \bigr\rangle \\ &\quad {}=\delta (\tilde{p}-\tilde { \underline{k}}-\tilde{u}) \delta (p- \underline{k}- u) \bigl\langle \varOmega ,\eta (\tilde{u}-\tilde{w}) \eta (\tilde{q}-\tilde { \underline{r}}) \eta ^*(q- \underline{r})\eta ^*(u-w) \varOmega \bigr\rangle \\ &\quad {}=\delta (\tilde{p}-\tilde { \underline{k}}-\tilde{u})\delta (p- \underline{k}- u) \bigl( \delta (\tilde{u}-\tilde{w}-q+\underline{r})\delta ( \tilde{q}-\tilde { \underline{r}}-u+w) \\ &\qquad {}+\delta (\tilde{u}-\tilde{w}-u+w)\delta (\tilde{q}-\tilde { \underline{r}}-q+ \underline{r}) \bigr). \end{aligned}$$
(B.29)

Let us consider the contribution to (B.28) of the first term in the bracket in (B.29):

$$\begin{aligned} &\bigl\langle \varOmega , B_{ \tilde{n}}(G_{2,\tilde{n}}) \bigl(\check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} \bigr)^* B_{ \tilde{m}}(G_{1,\tilde{m}})B_{n}^*(G_{1,n}) \check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} B_{m}^*(G_{2,m})\varOmega \bigr\rangle _1 \\ &\quad {}:=\int d^3\tilde{u} d^3\tilde{w} d^3u d^3w\int d^3\tilde{q} d^3\tilde{p} d^3 q d^3p \int d^{3 \tilde{n}}\tilde{r} d^{3 \tilde{m}}\tilde{k} d^{3n}r d^{3m}k \\ &\qquad {}\times \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{w}) \check {v}_{\overline {\alpha }} ^{\sigma }(w) \overline{G}_{2,\tilde{n}} (\tilde{q};\tilde{r}) \overline{G}_{1,\tilde{m}} (\tilde{p}; \tilde{k}) G_{1,n}(q;r) G_{2,m}(p; k) \\ &\qquad {}\times \delta (\tilde{p}-\tilde { \underline{k}}-\tilde{u})\delta (p- \underline{k}- u) \delta (\tilde{u}-\tilde{w}-q+\underline{r})\delta ( \tilde{q}-\tilde { \underline{r}}-u+w) \\ &\qquad {}\times \bigl\langle \varOmega , a(\tilde{r})^{ \tilde{n}}a(\tilde{w}) a(\tilde{k})^{ \tilde{m}} a^*(r)^{n} a^*(w) a^*(k)^{m}\varOmega \bigr\rangle \\ &\quad {}=\int d^3\tilde{q} d^3\tilde{p} d^3 q d^3p \int d^{3 \tilde{n}}\tilde{r} d^{3 \tilde{m}}\tilde{k} d^{3n}r d^{3m}k \\ &\qquad {}\times \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{w}_*) \check {v}_{\overline {\alpha }} ^{\sigma }(w_*) \overline{G}_{2,\tilde{n}} (\tilde{q};\tilde{r}) \overline{G}_{1,\tilde{m}} (\tilde{p}; \tilde{k}) G_{1,n}(q;r) G_{2,m}(p; k) \\ &\qquad {}\times \bigl\langle \varOmega , a(\tilde{r})^{ \tilde{n}} a(\tilde{k})^{ \tilde{m}} a(\tilde{w}_* )a^*(w_*) a^*(r)^{n} a^*(k)^{m}\varOmega \bigr\rangle , \end{aligned}$$
(B.30)

where in the last step we integrated over \(u, w, \tilde{u}, \tilde{w}\) and set \(w_{*}:=p- \underline{k}-\tilde{q}+\tilde { \underline{r}}\), \(\tilde{w}_{*}:=\tilde{p}-\tilde { \underline{k}}-q+ \underline{r}\). Now we consider the expectation value of the photon creation operators:

$$\begin{aligned} &\bigl\langle \varOmega , a(\tilde{r})^{\tilde{n}} a(\tilde{k})^{\tilde{m}} a(\tilde{w}_*) a^*(w_*) a^*(r)^{n} a^*(k)^{m}\varOmega \bigr\rangle \\ &\quad {} =\delta (w_*-\tilde{w}_*) \bigl\langle \varOmega , a(\tilde{r})^{\tilde{n}} a(\tilde{k})^{\tilde{m}} a^*(r)^{n} a^*(k)^{m}\varOmega \bigr\rangle , \end{aligned}$$
(B.31)

for \(r,k,w, \tilde{r},\tilde{k},\tilde{w}\) in the supports of the respective functions. (Here we made use of the fact that \(|\tilde{w}_{*}|\leq \sigma \), whereas |r i |≥σ, |k j |≥σ). Let us now substitute the r.h.s. of (B.31) to (B.30). Making use of Lemma B.2, we obtain

$$\begin{aligned} &\bigl\langle \varOmega , B_{ \tilde{n}}(G_{2,\tilde{n}}) \bigl( \check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} \bigr)^* B_{ \tilde{m}}(G_{1,\tilde{m}})B_{n}^*(G_{1,n}) \check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} B_{m}^*(G_{2,m})\varOmega \bigr\rangle _{1} \\ &\quad {}=\sum_{\rho \in S_{m+n}}\int d^3\tilde{q} d^3\tilde{p} d^3 q d^3p \int d^{3\tilde{n}}\tilde{r} d^{3 \tilde{m}}\tilde{k} d^{3n}r d^{3m}k \\ &\qquad {}\times \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{p}-\tilde { \underline{k}}-q+ \underline{r}) \check {v}_{\overline {\alpha }} ^{\sigma }(p- \underline{k}-\tilde{q}+ \tilde { \underline{r}}) \overline{G}_{2,\tilde{n}} (\tilde{q} ; \tilde{r}) \overline{G}_{1,\tilde{m}} (\tilde{p}; \tilde{k}) G_{1,n}(q ;r) G_{2,m}(p; k) \\ &\qquad {}\times \delta (p+q-\tilde{p}-\tilde{q}) \delta (\hat{\tilde {r}}-\hat{r} )\delta (\check{\tilde {r}}- \check{k})\delta (\hat{\tilde {k}}-\hat{k} ) \delta (\check{\tilde {k}}-\check{r}). \end{aligned}$$
(B.32)

By integrating over \(\tilde{q}\), \(\tilde{r}\), \(\tilde{k}\), we obtain

$$\begin{aligned} &\bigl\langle \varOmega , B_{ \tilde{n}}(G_{2,\tilde{n}}) \bigl( \check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} \bigr)^* B_{ \tilde{m}}(G_{1,\tilde{m}})B_{n}^*(G_{1,n}) \check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} B_{m}^*(G_{2,m})\varOmega \bigr\rangle _{1} \\ &\quad {}=\sum_{\rho \in S_{m+n}}\int d^3\tilde{p} d^3 q d^3p \int d^{3n}r d^{3m}k \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{p}- q - \underline {\hat{k}} + \underline {\hat{r}} )^2 \\ &\qquad {}\times \overline{G}_{2,\tilde{n}} (p+q-\tilde{p};\hat{r} ,\check{k} ) \overline{G}_{1,\tilde{m}} (\tilde{p}; \hat{k} ,\check{r} ) G_{1,n}(q;r) G_{2,m}(p; k) \\ &\quad {}=\sum_{\rho \in S_{m+n}}\int d^3\tilde{p} d^3 q d^3p \int d^{3n}r d^{3m}k \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{p})^2 \\ &\qquad {}\times \overline{G}_{2,\tilde{n}} (p-\tilde{p}- \underline {\hat{k}} + \underline {\hat{r}} ;\hat{r} ,\check{k} ) \overline{G}_{1,\tilde{m}} (\tilde{p}+q+ \underline {\hat{k}} - \underline {\hat{r}} ; \hat{k} ,\check{r} ) G_{1,n}(q;r) G_{2,m}(p; k), \end{aligned}$$
(B.33)

where in the last step we made a change of variables \(\tilde{p} \to \tilde{p}+q+ \underline {\hat{k}} - \underline {\hat{r}} \). This gives the first term on the r.h.s. of (B.27).

Let us now consider the contribution of the second term in the bracket on the r.h.s. of formula (B.29):

$$\begin{aligned} & \bigl\langle \varOmega , B_{ \tilde{n}}(G_{2,\tilde{n}}) \bigl(\check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} \bigr)^* B_{ \tilde{m}}(G_{1,\tilde{m}})B_{n}^*(G_{1,n}) \check{H}_{\mathrm{I},\sigma }^{\mathrm{c}} B_{m}^*(G_{2,m})\varOmega \bigr\rangle _2 \\ &\quad {}:=\int d^3w\int d^3\tilde{p} d^3 q d^3p \int d^{3 \tilde{n}}\tilde{r} d^{3 \tilde{m}} \tilde{k} d^{3n}r d^{3m}k \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{p}-\tilde { \underline{k}}-p+ \underline{k}+w) \check {v}_{\overline {\alpha }} ^{\sigma }(w) \\ &\qquad {}\times \overline{G}_{2,\tilde{n}} (q+\tilde { \underline{r}}- \underline{r};\tilde{r}) \overline{G}_{1,\tilde{m}} (\tilde{p}; \tilde{k}) G_{1,n}(q;r) G_{2,m}(p; k) \\ &\qquad {}\times\bigl\langle \varOmega , a(\tilde{r})^{ \tilde{n}}a(\tilde{p}-\tilde { \underline{k}}-p+ \underline{k}+w) a( \tilde{k})^{ \tilde{m}} a^*(r)^{n} a^*(w) a^*(k)^{m} \varOmega \bigr\rangle \\ &\quad {}= \int d^3w\int d^3\tilde{p} d^3 q d^3p \int d^{3 \tilde{n}}\tilde{r} d^{3 \tilde{m}}\tilde{k} d^{3n}r d^{3m}k \check {v}_{\overline {\alpha }} ^{\sigma }(\tilde{p}-\tilde { \underline{k}}-p+ \underline{k}+w) \check {v}_{\overline {\alpha }} ^{\sigma }(w) \\ &\qquad {}\times \overline{G}_{2,\tilde{n}} (q+\tilde { \underline{r}}- \underline{r};\tilde{r}) \overline{G}_{1,\tilde{m}} (\tilde{p}; \tilde{k}) G_{1,n}(q;r) G_{2,m}(p; k)\delta (\tilde{p}-\tilde { \underline{k}}-p+ \underline{k}) \\ &\qquad {}\times \bigl\langle \varOmega , a(\tilde{r})^{ \tilde{n}}a(\tilde{k})^{ \tilde{m}} a^*(r)^{n} a^*(k)^{m}\varOmega \bigr\rangle \\ &\quad {}= \bigl\| \check {v}_{\overline {\alpha }} ^{\sigma }\bigr\| _2^2 \sum _{\rho \in S_{m+n}} \int d^3 q d^3p \int d^{3n}r d^{3m}k G_{1,n}(q;r) G_{2,m}(p; k) \\ &\qquad {}\times \overline{G}_{2,\tilde{n}} (q+\underline {\check{k} }-\underline {\check{r} };\hat{r} , \check{k} ) \overline{G}_{1,\tilde{m}} (p-\underline {\check{k} }+\underline {\check{r} }; \hat{k} ,\check{r} ), \end{aligned}$$
(B.34)

where in the first step we integrated over \(\tilde{u}, \tilde{w}, u, \tilde{q}\) and in the last step we made use again of Lemma B.2. This gives the second term on the r.h.s. of (B.27) and concludes the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dybalski, W., Pizzo, A. Coulomb Scattering in the Massless Nelson Model I. Foundations of Two-Electron Scattering. J Stat Phys 154, 543–587 (2014). https://doi.org/10.1007/s10955-013-0857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0857-y

Keywords

Navigation