Skip to main content
Log in

On Eigenfunction Expansion of Solutions to the Hamilton Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We establish a spectral representation for solutions to linear Hamilton equations with positive definite energy in a Hilbert space. Our approach is a special version of M. Krein’s spectral theory of J-selfadjoint operators in the Hilbert spaces with indefinite metric. Our main result is an application to the eigenfunction expansion for the linearized relativistic Ginzburg–Landau equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Spectral properties of Schrödinger operator and scattering theory. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 2, 151–218 (1975)

    MATH  MathSciNet  Google Scholar 

  2. Azizov, T.Ya., Iokhvidov, I.S.: Linear Operators in Space with an Indefinite Metric. Wiley, Chichester (1989)

    MATH  Google Scholar 

  3. Bambusi, D., Cuccagna, S.: On dispersion of small energy solutions of the nonlinear Klein–Gordon equation with a potential. Am. J. Math. 133(5), 1421–1468 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boussaid, N., Cuccagna, S.: On stability of standing waves of nonlinear Dirac equations. Commun. Partial Differ. Equ. 37(6), 1001–1056 (2012). arXiv:1103.4452

    Article  MATH  MathSciNet  Google Scholar 

  5. Buslaev, V.S., Perelman, G.S.: Scattering for the nonlinear Schrödinger equation: states close to a soliton. St. Petersburg Math. J. 4, 1111–1142 (1993)

    MathSciNet  Google Scholar 

  6. Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations, nonlinear evolution equations. In: Transl. Ser. 2, vol. 164, pp. 75–98. Am. Math. Soc., Providence (1995)

    Google Scholar 

  7. Buslaev, V.S., Sulem, C.: On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20(3), 419–475 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Cazenave, T., Haraux, A.: Semilinear Evolution Equations. Clarendon, Oxford (1998)

    MATH  Google Scholar 

  9. Cuccagna, S.: Stabilization of solutions to nonlinear Schrödinger equations. Commun. Pure Appl. Math. 54, 1110–1145 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cuccagna, S.: On asymptotic stability of ground states of NLS. Rev. Math. Phys. 15, 877–903 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cuccagna, S., Pelinovsky, D., Vougalter, V.: Spectra of positive and negative energies in the linearized NLS problem. Commun. Pure Appl. Math. 58(1), 1–29 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cuccagna, S.: On scattering of small energy solutions of non-autonomous Hamiltonian nonlinear Schrödinger equations. J. Differ. Equ. 250(5), 2347–2371 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Cuccagna, S.: The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states. Commun. Math. Phys. 305(2), 279–331 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Cuccagna, S.: On asymptotic stability of moving ground states of the nonlinear Schrödinger equation. Trans. Am. Math. Soc. (2012). To appear in arXiv:1107.4954

  15. Cuccagna, S., Mizumachi, T.: On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations. Commun. Math. Phys. 284(1), 51–77 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Cuccagna, S., Tarulli, M.: On asymptotic stability in energy space of ground states of NLS in 2D. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26(4), 1361–1386 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Erdogan, M.B., Schlag, W.: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II. J. Anal. Math. 99, 199–248 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gérard, C.: Scattering theory for Klein–Gordon equations with non-positive energy. Ann. Henri Poincaré 13(4), 883–941 (2012)

    Article  ADS  MATH  Google Scholar 

  19. Gohberg, I.C., Krein, M.G.: Theory and Applications of Volterra Operators in Hilbert Space. AMS, Providence (1970)

    MATH  Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators. IV: Fourier Integral Operators. Springer, Berlin (2009)

    Book  Google Scholar 

  21. Iohvidov, I.S., Krein, M.G., Langer, H.: Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, Mathematical Research, vol. 9. Akademie Verlag, Berlin (1982)

    Google Scholar 

  22. Jonas, P.: On the functional calculus and the spectral function for definitizable operators in Krein space. Beitr. Anal. 16, 121–135 (1981)

    MATH  MathSciNet  Google Scholar 

  23. Jonas, P.: On a class of unitary operators in Krein space. In: Operator Theory: Advances and Applications, vol. 17, pp. 151–172. Birkhäuser, Basel (1986)

    Google Scholar 

  24. Jonas, P.: On a class of selfadjoint operators in Krein space and their compact perturbations. Integral Equ. Oper. Theory 11, 351–384 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jonas, P.: On the spectral theory of operators associated with perturbed Klein–Gordon and wave type equations. J. Oper. Theory 29, 207–224 (1993)

    MATH  MathSciNet  Google Scholar 

  26. Jonas, P.: On bounded perturbations of operators of Klein–Gordon type. Glasnik Math. 35, 59–74 (2000)

    MATH  MathSciNet  Google Scholar 

  27. Kako, T.: Spectral and scattering theory for the J-selfadjoint operators associated with the perturbed Klein–Gordon type equations. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 23, 199–221 (1976)

    MATH  MathSciNet  Google Scholar 

  28. Imaykin, V., Komech, A.I., Spohn, H.: Scattering asymptotics for a charged particle coupled to the Maxwell field. J. Math. Phys. 52(4), 042701 (2011). arXiv:0807.1972

    Article  ADS  MathSciNet  Google Scholar 

  29. Komech, A.I., Kopylova, E.A., Spohn, H.: Scattering of solitons for Dirac equation coupled to a particle. J. Math. Anal. Appl. 383(2), 265–290 (2011). arXiv:1012.3109

    Article  MATH  MathSciNet  Google Scholar 

  30. Kopylova, E.A., Komech, A.I.: On asymptotic stability of kink for relativistic Ginzburg–Landau equation. Arch. Ration. Mech. Anal. 202(2), 213–245 (2011). arXiv:0910.5539

    Article  MATH  MathSciNet  Google Scholar 

  31. Kopylova, E.A., Komech, A.I.: On asymptotic stability of moving kink for relativistic Ginzburg–Landau equation. Commun. Math. Phys. 302(1), 225–252 (2011). arXiv:0910.5538

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Komech, A., Kopylova, E.A.: Dispersion Decay and Scattering Theory. Wiley, Hoboken (2012)

    Book  MATH  Google Scholar 

  33. Krein, M.G., Langer, H.K.: The spectral function of a selfadjoint operator in a space with indefinite metric. Sov. Math. Dokl. 4, 1236–1239 (1963)

    Google Scholar 

  34. Krein, M.G., Shmul’jan, Yu.: J-polar representations of plus-operators. Math. Oper.forsch. Stat., Ser. Stat. 1(2), 172–210 (1966). Russian

    Google Scholar 

  35. Langer, H.: Spectral functions of definitizable operators in Krein spaces. In: Butkovic, D., Kraljevic, H., Kurepa, S. (eds.) Functional Analysis, LNM948, pp. 1–46. Springer, Berlin (1981)

    Chapter  Google Scholar 

  36. Langer, H., Najman, B.: Perturbation theory for definitizable operators in Krein spaces. J. Oper. Theory 9, 297–317 (1983)

    MATH  MathSciNet  Google Scholar 

  37. Langer, H., Najman, B., Tretter, C.: Spectral theory of the Klein–Gordon equation in Krein spaces. Proc. Edinb. Math. Soc. 51(3), 711–750 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Langer, H., Najman, B., Tretter, C.: Spectral theory of the Klein–Gordon equation in Pontryagin spaces. Commun. Math. Phys. 267(1), 159–180 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Langer, H., Tretter, C.: Variational principles for eigenvalues of the Klein–Gordon equation. J. Math. Phys. 47(10), 103506 (2006), 18 p.

    Article  ADS  MathSciNet  Google Scholar 

  40. Martel, Y., Merle, F.: Asymptotic stability of solitons of the gKdV equations with general nonlinearity. Math. Ann. 341, 391–427 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Miller, J., Weinstein, M.: Asymptotic stability of solitary waves for the regularized long-wave equation. Commun. Pure Appl. Math. 49, 399–441 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pego, R.L., Weinstein, M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  44. Reed, M., Simon, B.: Methods of Modern Mathematical Physics III: Scattering Theory. Academic Press, New York (1979)

    MATH  Google Scholar 

  45. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  46. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  47. Sakurai, J.J.: Advanced Quantum Mechanics. Addison-Wesley, Reading (1967)

    Google Scholar 

  48. Schlag, W.: Dispersive estimates for Schrödinger operators: a survey. In: Bourgain, J., et al. (eds.) Mathematical Aspects of Nonlinear Dispersive Equations. Lectures of the CMI/IAS Workshop on Mathematical Aspects of Nonlinear PDEs, pp. 255–285, Princeton, NJ, USA. Princeton University Press, Princeton (2004)

    Google Scholar 

  49. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, New York (1987)

    Book  MATH  Google Scholar 

  50. Sigal, I.M.: Nonlinear wave and Schrödinger equations. I: instability of periodic and quasiperiodic solutions. Commun. Math. Phys. 153(2), 297–320 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Soffer, A., Weinstein, M.I.: Multichannel nonlinear scattering in nonintegrable systems. Commun. Math. Phys. 133, 119–146 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Soffer, A., Weinstein, M.I.: Multichannel nonlinear scattering and stability II. The case of anisotropic and potential and data. J. Differ. Equ. 98, 376–390 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. Soffer, A., Weinstein, M.I.: Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136, 9–74 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  54. Soffer, A., Weinstein, M.I.: Selection of the ground state for nonlinear Schrödinger equations. Rev. Math. Phys. 16(8), 977–1071 (2004). arXiv:nlin/0308020

    Article  MATH  MathSciNet  Google Scholar 

  55. Spohn, H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  56. Tsai, T.-P.: Asymptotic dynamics of nonlinear Schrödinger equations with many bound states. J. Differ. Equ. 192(1), 225–282 (2003)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank V. Ivrii, A. Kostenko, M. Malamud and G. Teschl for useful discussions on pseudodifferential operators and J-selfadjoint operators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Komech.

Additional information

A. Komech was supported partly by Alexander von Humboldt Research Award, Austrian Science Fund (FWF): P22198-N13, and the grant of the Russian Foundation for Basic Research.

E. Kopylova was supported partly by Austrian Science Fund (FWF): M1329-N13, and the grant of the Russian Foundation for Basic Research.

Appendices

Appendix A: Spectral Condition for |v|<1

Let us check the spectral condition (1.6) for operators B v from (3.8) with any |v|<1 in the space of the odd states. First let us check the continuous spectrum.

Lemma A.1

The continuous spectrum of B v lies in [δ,∞) with some δ>0.

Proof

By Corollary 2(c) of [45, XIII.4] and (3.7) it suffices to find the continuous spectrum of the unperturbed operator \(B_{v}^{0}\) corresponding to V v (x)=0. Consider the spectral equation

$$ \bigl(B_v^0-\lambda\bigr)\psi=0 $$
(A.1)

and find the solution of type ψ=e ikx ϕ with real k and \(\phi\in\mathbb{C}^{2}\). Substituting to (A.1) we obtain

$$\left ( \begin{array}{c@{\quad}c} k^2+m^2-\lambda & ikv \\ -ikv & 1-\lambda \end{array} \right )\phi=0. $$

For nonzero vectors ϕ, the determinant of the matrix vanishes:

$$ k^2\bigl(1-\lambda-v^2\bigr)+ \bigl(m^2-\lambda\bigr) (1-\lambda)=0. $$
(A.2)

Then k 2=(m 2λ)(1−λ)/(λ−1+v 2)≥0. This inequality holds if

$$\left \{ \begin{array}{l@{\quad}l} \lambda\in[1-v^2,1]\cup[m^2,\infty) & \mbox{for } 1\le m^2,\\ \lambda\in[m^2,1-v^2)\cup(1,\infty) & \mbox{for } m^2\le 1-v^2\le1,\\ \lambda\in[1-v^2,m^2]\cup[1,\infty) & \mbox{for } 1-v^2\le m^2\le1. \end{array} \right . $$

Now the lemma follows with δ=min(1−v 2,m 2). □

Now let us consider the discrete spectrum.

Lemma A.2

  1. (i)

    \(\operatorname{Ker}B\) is generated by \((s_{0}'(x),-vs_{0}''(x))\), where \(s_{0}'(x)\) is an even function.

  2. (ii)

    The nonzero discrete spectrum of B is positive.

Proof

  1. (i)

    Equation =0 is equivalent to the system

    $$ \left ( \begin{array}{c@{\quad}c} S_v & -v\frac{d}{dx} \\ v\frac{d}{dx} \ & 1 \end{array} \right )\left ( \begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right )=0. $$
    (A.3)

    The second equation (A.7) implies \(\psi_{2}=-v \psi_{1}'\). Substituting into the first equation we obtain

    $$ \tilde{S}_v \psi_1=0, $$
    (A.4)

    where \(\tilde{S}_{v}\) is defined in (3.9). However, (3.9) with v=0 means that \(0\in\sigma_{pp}(\tilde{S}_{v})\). Moreover, λ=0 is the minimal eigenvalue of \(\tilde{S}_{v}\), since the corresponding eigenfunction \(s_{v}'(x)\) does not vanish [31, (1.9)]. Hence,

    $$ \sigma(\tilde{S}_v)\subset[0,\infty). $$
    (A.5)

    Moreover,

    $$ \operatorname{Ker}\tilde{S}_v=\bigl(s_0'(x) \bigr), $$
    (A.6)

    since any second linearly independent solution of the homogeneous equation cannot belong to \(L^{2}(\mathbb{R})\) by Theorem X.8 of [43].

  2. (ii)

    Consider equation B v ψ=λψ with λ<0:

    $$ \left ( \begin{array}{c@{\quad}c} S_v-\lambda& -v\frac{d}{dx} \\ v\frac{d}{dx} \ & 1-\lambda \end{array} \right )\left ( \begin{array}{c} \psi_1 \\ \psi_2 \end{array} \right )=0. $$
    (A.7)

    The second equation (A.7) implies \(\psi_{2}=v \psi_{1}'/ (\lambda-1)\). Substituting into the first equation we obtain

    $$ \biggl(\tilde{S}_v+\frac{v^2\lambda}{1-\lambda}\frac{d^2}{dx^2}- \lambda \biggr)\psi_1=0. $$
    (A.8)

    For λ<0 the operator is positive since \(\tilde{S}_{v}\ge0\) by (A.5). Hence, (A.8) has no nonzero solutions ψ 1L 2.  □

Corollary A.3

Lemmas 3.1 and A.2 imply that condition (1.6) holds for |v|<1 in the space of the odd states.

Appendix B: Linearization of U(1)-Invariant Hamilton PDEs

Equations (1.2) with JBBJ arise in the linearization of nonlinear U(1)-invariant Hamilton PDEs. Namely, consider the U(1)-invariant Hamilton functional

(B.1)

with a real potential U(x,r) and \(\psi(x)\in\mathbb{C}=\mathbb{R}^{2}\). The corresponding Hamilton equation reads as the nonlinear Schrödinger equation

(B.2)

where i can be regarded as a real 2×2 matrix J of type (3.8). The linearization at a stationary state s 0(x) is obtained by substitution ψ=s 0+φ and expansion |ψ|2=|s 0|2+2s 0φ+|φ|2, where s 0φ is the scalar product of the real vectors from \(\mathbb{R}^{2}\). Neglecting the terms of higher order, we obtain the linearized equation

$$ i\dot{\varphi}(x,t)=-\Delta\varphi(x,t)+ U_r \bigl(x,\bigl|s_0(x)\bigr|^2\bigr)\varphi+ 2U_{rr} \bigl(x,\bigl|s_0(x)\bigr|^2\bigr) (s_0\cdot\varphi) s_0, $$
(B.3)

which can be represented in the form (1.2) with J=−i and \(X(t)=(\operatorname{Re}\varphi(t),\operatorname{Im}\varphi(t))\). The last term of (B.3) is not complex linear operator of φ. In other words, it does not commute with the multiplication of φ by i. So JBBJ if \(U_{rr}(x,|s_{0}(x)|^{2})\not\equiv0\). Let us assume that U(x,r) is a real-analytic function of r>0, and \(s_{0}(x)\not\equiv0\). Then the last term of (B.3) vanishes exactly for the linear Schrödinger equation when U(x,r)=V(x)r.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komech, A., Kopylova, E. On Eigenfunction Expansion of Solutions to the Hamilton Equations. J Stat Phys 154, 503–521 (2014). https://doi.org/10.1007/s10955-013-0846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0846-1

Keywords

Navigation