Skip to main content
Log in

Condensation in Stochastic Particle Systems with Stationary Product Measures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study stochastic particle systems with stationary product measures that exhibit a condensation transition due to particle interactions or spatial inhomogeneities. We review previous work on the stationary behaviour and put it in the context of the equivalence of ensembles, providing a general characterization of the condensation transition for homogeneous and inhomogeneous systems in the thermodynamic limit. This leads to strengthened results on weak convergence for subcritical systems, and establishes the equivalence of ensembles for spatially inhomogeneous systems under very general conditions, extending previous results which focused on attractive and finite systems. We use relative entropy techniques which provide simple proofs, making use of general versions of local limit theorems for independent random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Liggett, T.M.: Interacting Particle Systems, vol. 276. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  3. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  4. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  5. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov Processes. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  6. Liggett, T.M.: An infinite particle system with zero range interactions. Ann. Probab. 1(2), 240–253 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Andjel, E.D.: Invariant measures for the zero range process. Ann. Probab. 10(3), 525–547 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cocozza-Thivent, C.: Processus des misanthropes. Z. Wahrscheinlichkeitstheor. 70(4), 509–523 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135(1), 25–55 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Giardinà, C., Redig, F., Vafayi, K.: Correlation inequalities for interacting particle systems with duality. J. Stat. Phys. 141(2), 242–263 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Waclaw, B., Evans, M.R.: Explosive condensation in a mass transport model. Phys. Rev. Lett. 108(7), 070601 (2012)

    Article  ADS  Google Scholar 

  12. Evans, M.R.: Bose-Einstein condensation in disordered exclusion models and relation to traffic flow. Europhys. Lett. 36(1), 13–18 (1996)

    Article  ADS  Google Scholar 

  13. Krug, J., Ferrari, P.A.: Phase transitions in driven diffusive systems with random rates. J. Phys. A, Math. Gen. 29, L465–L471 (1996)

    Article  ADS  Google Scholar 

  14. Landim, C.: Hydrodynamical limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes. Ann. Probab. 24(2), 599–638 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Benjamini, I., Ferrari, P.A., Landim, C.: Asymmetric conservative processes with random rates. Stoch. Process. Appl. 61(2), 181–204 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Andjel, E.D., Ferrari, P.A., Guiol, H., Landim, C.: Convergence to the maximal invariant measure for a zero-range process with random rates. Stoch. Process. Appl. 90(1), 67–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ferrari, P.A., Sisko, V.: Escape of mass in zero-range processes with random rates. In: Asymptotics: Particles, Processes and Inverse Problems. IMS Lecture Notes, vol. 55, pp. 108–120 (2007)

    Chapter  Google Scholar 

  18. Grosskinsky, S., Redig, F., Vafayi, K.: Condensation in the inclusion process and related models. J. Stat. Phys. 142(5), 952–974 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Drouffe, J.-M., Godrèche, C., Camia, F.: A simple stochastic model for the dynamics of condensation. J. Phys. A, Math. Gen. 31(1), L19 (1998)

    Article  ADS  MATH  Google Scholar 

  20. Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1), 42–57 (2000)

    Article  ADS  Google Scholar 

  21. Jeon, I., March, P., Pittel, B.: Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28(3), 1162–1194 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grosskinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113(3–4), 389–410 (2003)

    Article  MATH  Google Scholar 

  23. Ferrari, P.A., Landim, C., Sisko, V.: Condensation for a fixed number of independent random variables. J. Stat. Phys. 128(5), 1153–1158 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Armendáriz, I., Loulakis, M.: Thermodynamic limit for the invariant measures in supercritical zero range processes. Probab. Theory Relat. Fields 145(1–2), 175–188 (2008)

    Google Scholar 

  25. Armendáriz, I., Grosskinsky, S., Loulakis, M.: Zero range condensation at criticality. Stoch. Process. Appl. 123(9), 3466–3496 (2013)

    Article  Google Scholar 

  26. Angel, A.G., Evans, M.R., Mukamel, D.: Condensation transitions in a one-dimensional zero-range process with a single defect site. J. Stat. Mech. Theory Exp. 04, P04001 (2004)

    Google Scholar 

  27. Grosskinsky, S., Chleboun, P., Schütz, G.M.: Instability of condensation in the zero-range process with random interaction. Phys. Rev. E 78(3), 030101(R) (2008)

    Article  ADS  Google Scholar 

  28. del Molino, L.C.G., Chleboun, P., Grosskinsky, S.: Condensation in randomly perturbed zero-range processes. J. Phys. A, Math. Theor. 45(20), 205001 (2012)

    Article  ADS  Google Scholar 

  29. Godrèche, C., Luck, J.M.: Condensation in the inhomogeneous zero-range process: an interplay between interaction and diffusion disorder. J. Stat. Mech. Theory Exp. 2012(12), P12013 (2012)

    Article  Google Scholar 

  30. Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Factorized steady states in mass transport models on an arbitrary graph. J. Phys. A, Math. Gen. 39(18), 4859 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Hanney, T.: Factorized steady states for multi-species mass transfer models. J. Stat. Mech. Theory Exp. 2006(12), P12006 (2006)

    Article  Google Scholar 

  32. Evans, M.R., Hanney, T., Majumdar, S.N.: Interaction driven real-space condensation. Phys. Rev. Lett. 97, 010602 (2006)

    Article  ADS  Google Scholar 

  33. Waclaw, B., Sopik, J., Janke, W., Meyer-Ortmanns, H.: Mass condensation in one dimension with pair-factorized steady states. J. Stat. Mech. Theory Exp. 2009(10), P10021 (2009)

    Article  Google Scholar 

  34. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A, Math. Gen. 38(19), R195 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Godrèche, C.: From Urn models to zero-range processes: statics and dynamics. Lect. Notes Phys. 716, 261–294 (2007)

    Article  ADS  Google Scholar 

  36. Grosskinsky, S., Schütz, G.M.: Discontinuous condensation transition and nonequivalence of ensembles in a zero-range process. J. Stat. Phys. 132(1), 77–108 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Georgii, H.O.: Gibbs Measures and Phase Transitions. Studies in Mathematics, vol. 9. Walter de Gruyter, Berlin (1988)

    Book  MATH  Google Scholar 

  38. Csiszar, I., Korner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Probability and Mathematical Statistics. Academic Press, New York (1981)

    MATH  Google Scholar 

  39. Csiszar, I.: $I$-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3(1), 146–158 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  40. Luck, J.M., Godrèche, C.: Structure of the stationary state of the asymmetric target process. J. Stat. Mech. Theory Exp. 2007(08), P08005 (2007)

    Article  Google Scholar 

  41. Gobron, T., Saada, E.: Couplings, attractiveness and hydrodynamics for conservative particle systems. Ann. Inst. Henri Poincaré Probab. Stat. 46(4), 1132–1177 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Balázs, M., Rassoul-Agha, F., Seppäläinen, T., Sethuraman, S.: Existence of the zero range process and a deposition model with superlinear growth rates. Ann. Probab. 35(4), 1201–1249 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A, Math. Gen. 26(7), 1493 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Levine, E., Mukamel, D., Schütz, G.M.: Zero-range process with open boundaries. J. Stat. Phys. 120(5–6), 759–778 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  46. Schütz, G.M., Harris, R.J.: Hydrodynamics of the zero-range process in the condensation regime. J. Stat. Phys. 127(2), 419–430 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Davis, B., McDonald, D.: An elementary proof of the local central limit theorem. J. Theor. Probab. 8(3), 693–701 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mitalauskas, A.A.: Local limit theorems for stable limit distributions. Theory Probab. Appl. 7(2), 180–185 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  49. Pinsker, M.S.: Dynamical systems with completely positive or zero entropy. Sov. Math. Dokl. 1, 937–938 (1960)

    MATH  MathSciNet  Google Scholar 

  50. Gray, R.M.: Entropy and Information Theory, 2nd edn. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  51. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  52. Csiszar, I.: Sanov property, generalized I-projection and a conditional limit theorem. Ann. Probab. 12(3), 768–793 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  53. Godréche, C., Luck, J.M.: A record-driven growth process. J. Stat. Mech. Theory Exp. 2008(11), P11006 (2008)

    Article  Google Scholar 

  54. Godréche, C., Luck, J.M.: On leaders and condensates in a growing network. J. Stat. Mech. Theory Exp. 2010(07), P07031 (2010)

    Article  Google Scholar 

  55. McDonald, D.: A local limit theorem for large deviations of sums of independent, nonidentically distributed random variables. Ann. Probab. 7(3), 526–531 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  56. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Applications of Mathematics, vol. 38. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  57. Grosskinsky, S., Redig, F., Vafayi, K.: Dynamics of condensation in the symmetric inclusion process. Electron. J. Probab. 18(66), 1–23 (2013)

    MathSciNet  Google Scholar 

  58. Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Canonical analysis of condensation in factorised steady states. J. Stat. Phys. 123(2), 357–390 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Chleboun, P., Grosskinsky, S.: Finite size effects and metastability in zero-range condensation. J. Stat. Phys. 140(5), 846–872 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Chleboun, P.: Large deviations and metastability in condensing particle systems. PhD Thesis (2011)

  61. Chleboun, P.: Large deviations and metastability condensing size-particle systems (in preparation)

  62. Evans, M.R., Hanney, T.: Phase transition in two species zero-range process. J. Phys. A, Math. Gen. 36(28), L441 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Hanney, T., Evans, M.R.: Condensation transitions in a two-species zero-range process. Phys. Rev. E 69(1 Pt 2), 016107 (2004)

    Article  ADS  Google Scholar 

  64. Grosskinsky, S.: Equivalence of ensembles for two-species zero-range invariant measures. Stoch. Process. Appl. 118(8), 1322–1350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  65. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140(6), 1–50 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  66. Beltrán, J., Landim, C.: Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Relat. Fields 152(3–4), 781–807 (2011)

    Google Scholar 

  67. Bovier, A.: Metastability: a potential theoretic approach. In: Proceedings of the ICM, pp. 499–518. European Mathematical Society, Zürich (2006)

    Google Scholar 

  68. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains II, the nonreversible case. J. Stat. Phys. 149(4), 598–618 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Landim, C.: Metastability for a non-reversible dynamics: the evolution of the condensate in totally asymmetric zero range processes. arXiv:1204.5987

  70. Beltrán, J., Landim, C.: A martingale approach to metastability. arXiv:1305.5987

  71. Armendáriz, I., Grosskinsky, S., Loulakis, M.: Metastability in zero-range condensation in the thermodynamic limit (in preparation)

  72. Bovier, A., Neukirch, R.: A note on metastable behaviour in the zero-range process. The final report of the SFB 611 (2013, to appear)

  73. Godrèche, C.: Dynamics of condensation in zero-range processes. J. Phys. A, Math. Gen. 36(23), 6313 (2003)

    Article  MATH  Google Scholar 

  74. Godrèche, C., Luck, J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A, Math. Gen. 38(33), 7215 (2005)

    Article  ADS  Google Scholar 

  75. Jara, M., Beltrán, J.: Work in progress

  76. Hirschberg, O., Mukamel, D., Schütz, G.M.: Motion of condensates in non-Markovian zero-range dynamics. J. Stat. Mech. Theory Exp. 2012(08), P08014 (2012)

    Article  Google Scholar 

  77. Durrett, R.: Probability: Theory and Examples. Duxbury Press, N. Scituate (1995)

    Google Scholar 

Download references

Acknowledgements

S.G. acknowledges support by the Engineering and Physical Sciences Research Council (EPSRC), Grant No. EP/I014799/1. P.C. acknowledges support and funding from the University of Warwick as an IAS Global Research Fellow. We are grateful for inspiring discussions with colleagues, in particular E. Saada, T. Gobron, M.R. Evans, F. Redig and C. Godrèche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Grosskinsky.

Additional information

This paper is dedicated to Herbert Spohn in honour of his 65th birthday.

Appendix: Local Limit Theorems

Appendix: Local Limit Theorems

In this appendix we state relevant limit theorems for triangular arrays of independent non identical random variables that are key to results on the equivalence of ensembles for spatially inhomogeneous systems.

Details and a proof of the Lindeberg-Feller central limit theorem can be found in, for example, [77]. The local central limit theorem can be found in [47] and [55]. For each L, let ξ x,L , 1≤xL, be independent non identical random variables whose law depends on the x and the number of random variables L (a triangular array of random variables).

Theorem A.1

(The Lindeberg-Feller central limit theorem)

Suppose \(\mathbb{E}[\xi_{x,L}] = 0\), and

  1. (i)

    \(\sum_{x=1}^{L} \mathbb{E}[\xi_{x,L}^{2}] \to1\) as L→∞.

  2. (ii)

    For all ϵ>0, \(\sum_{x=1}^{L}\mathbb {E} [\vert \xi_{x,L}\vert ^{2}{\bf1}_{\vert\xi _{x,L}\vert> \epsilon} ] \to0\) as n→∞.

Then \(\sum_{x=1}^{L}\xi_{x,L}\) converges in distribution to the standard normal as n→∞.

For example we typically apply the central limit theorem to the centered and standardized sum of the single site occupations under the grand canonical measures, i.e.

$$\xi_{x,L} = \frac{\eta_x-R_x(\phi)}{\sqrt{L\,\sum_y\textrm {Var}_\phi(\eta_y)}} $$

where η x has law \(\nu^{x}_{\phi}\) not depending on the system size L. Then (i) follows by definition and (ii) follows by a dominated convergence argument if the second moments are uniformly bounded.

Now we assume that η x,L , 1≤xL, is a triangular array of independent integer valued random variables where η x,L has law P x,L . The Bernoulli part decomposition of the random variables η x,L is expressed in terms of,

$$q(P_{x,L}) = \sum_{n} \bigl( P_{x,L}[n] \wedge P_{x,L}[n+1] \bigr). $$

Define \(Q_{L} = \sum_{x=1}^{L} q(P_{x,L})\).

Theorem A.2

(Local central limit theorem [47])

Let \(\varSigma_{L} = \sum_{x=1}^{L}\eta_{x,L}\). Suppose there exist sequences B L >0 and A L , L≥1, such that B L →∞, \(\limsup B^{2}_{L}/Q_{L} < \infty\), and (Σ L A L )/B L converges in distribution to the standard normal. Then,

$$\begin{aligned} \sup_{n}\biggl \vert B_L P[ \varSigma_L = n] - \varPhi \biggl(\frac {n-A_L}{B_L} \biggr)\biggr \vert \to0 \quad\textrm{as} \ L\to \infty, \end{aligned}$$
(97)

where Φ is the standard normal density.

An alternative form of the local limit theorem can be found in [55]. In our cases A L L and \(B_{L} \sim\sqrt{L}\), and the main condition is to show that Q L L. In fact, using the structure of the marginals (ϕλ x )n w x (n) with uniform regularity of the w x (n) (22) it is easy to see that in fact Q L L.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chleboun, P., Grosskinsky, S. Condensation in Stochastic Particle Systems with Stationary Product Measures. J Stat Phys 154, 432–465 (2014). https://doi.org/10.1007/s10955-013-0844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0844-3

Keywords

Navigation