Skip to main content
Log in

Topology Trivialization and Large Deviations for the Minimum in the Simplest Random Optimization

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Finding the global minimum of a cost function given by the sum of a quadratic and a linear form in N real variables over (N−1)-dimensional sphere is one of the simplest, yet paradigmatic problems in Optimization Theory known as the “trust region subproblem” or “constraint least square problem”. When both terms in the cost function are random this amounts to studying the ground state energy of the simplest spherical spin glass in a random magnetic field. We first identify and study two distinct large-N scaling regimes in which the linear term (magnetic field) leads to a gradual topology trivialization, i.e. reduction in the total number \(\mathcal{N}_{tot}\) of critical (stationary) points in the cost function landscape. In the first regime \(\mathcal{N}_{tot}\) remains of the order N and the cost function (energy) has generically two almost degenerate minima with the Tracy-Widom (TW) statistics. In the second regime the number of critical points is of the order of unity with a finite probability for a single minimum. In that case the mean total number of extrema (minima and maxima) of the cost function is given by the Laplace transform of the TW density, and the distribution of the global minimum energy is expected to take a universal scaling form generalizing the TW law. Though the full form of that distribution is not yet known to us, one of its far tails can be inferred from the large deviation theory for the global minimum. In the rest of the paper we show how to use the replica method to obtain the probability density of the minimum energy in the large-deviation approximation by finding both the rate function and the leading pre-exponential factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that the value of C(N,ν′,ν) given in Eq. (5.2) of [20] misses the factor \(\frac{\nu'}{\sqrt{2\nu''}}\).

  2. Note that though the treatment of [20] was formally restricted to covariances of the form ν(y)=y 2+⋯, one can check that inclusion of the linear term in the expansion does not invalidate their formalism.

  3. Note that s vanishes at the typical energy and becomes negative for e typ <e<e c , i.e. that region is controlled by negative number of replica.

  4. The actual situation in the vicinity of \(\mathcal{E}_{c}\) may appear to be even more complicated, see a note about the announced recent rigorous analysis of the problem by Dembo and Zeitouni in the Conclusion section.

  5. For σ=0 the same calculation can be easily extended to any T and the corresponding tail of the free energy distribution f (coming from the large deviation regime) is found to be \(\sim e^{- \frac{2}{3} (1-T)^{3} (-2 y)^{3/2}}\) for T<1 with f=f typ+Jy, cf. [26]. It would be interesting to investigate how the small deviation distribution of f relates to the Tracy-Widom in the whole phase T<1.

  6. We use that \(\prod_{k=0}^{n-1} \varGamma((n-k)/2) = G(\frac{N+1}{2}) G(1+ \frac {N}{2})/(G(\frac{N-n+1}{2}) G(1+ \frac{N-n}{2}))\) in terms of the Barnes function G(x).

  7. Of course, as noted above the exponent term is correct, i.e. \(\mathcal{L}_{0}(\mathcal{E}) = \psi _{+}(s)\) there.

References

  1. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  2. Tisseur, F., Meerberger, K.: The quadratic eigenvalue problem. SIAM Rev. 41(2), 235–286 (2001)

    Article  ADS  Google Scholar 

  3. Gander, W., Golub, G.H., von Matt, U.: A constrained eigenvalue problem. Linear Algebra Appl. 114–115, 815–839 (1989)

    Article  Google Scholar 

  4. Hager, W.W.: Minimizing a quadratic over a sphere. SIAM J. Optim. 12(1), 188–208 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sorensen, D.C.: Minimization of a large-scale quadratic function subject to a spherical constraint. SIAM J. Optim. 7(1), 141–161 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Forsythe, G.E., Golub, G.H.: On the stationary values of a second degree polynomial on the unit sphere. J. Soc. Ind. Appl. Math. 13, 1050–1068 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kosterlitz, J.M., Thouless, D.J., Jones, R.C.: Spherical model of a spin glass. Phys. Rev. Lett. 36, 1217–1220 (1976)

    Article  ADS  Google Scholar 

  8. De Dominisis, C., Giardina, I.: Random Fields and Spin Glasses. Cambridge Univ. Press, Cambridge (2006). 213 pp

    Book  Google Scholar 

  9. Tracy, C., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Ben Arous, G., Dembo, A., Guionnet, A.: Aging of spherical spin glasses. Probab. Theory Relat. Fields 120, 1–67 (2001)

    Article  MATH  Google Scholar 

  11. Dean, D.S., Majumdar, S.N.: Large deviations of extreme eigenvalues of random matrices. Phys. Rev. Lett. 97, 160201 (2006). [4 pages]

    Article  ADS  MathSciNet  Google Scholar 

  12. Majumdar, S.N., Vergassola, M.: Large deviations of the maximum eigenvalue for Wishart and Gaussian random matrices. Phys. Rev. Lett. 102, 060601 (2009). [4 pages]

    Article  ADS  Google Scholar 

  13. Borot, G., Eynard, B., Majumdar, S.N., Nadal, C.: Large deviations of the maximal eigenvalue of random matrices. J. Stat. Mech. Theory Exp. 11, 11024 (2011)

    Article  MathSciNet  Google Scholar 

  14. Forrester, P.J.: Spectral density asymptotics for Gaussian and Laguerre β-ensembles in the exponentially small region. J. Phys. A 45(7), 075206 (2012). 145201 [15pp]

    Article  ADS  MathSciNet  Google Scholar 

  15. Fyodorov, Y.V.: Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Phys. Rev. Lett. 92(24), 240601 (2004). [4 pages]; Erratum ibid 92 (2004), Issue 16, 240601 [1p]

    Article  ADS  MathSciNet  Google Scholar 

  16. Bray, A.J., Dean, D.: The statistics of critical points of Gaussian fields on large-dimensional spaces. Phys. Rev. Lett. 98(15), 150201 (2007). [4p]

    Article  ADS  Google Scholar 

  17. Fyodorov, Y.V., Williams, I.: Replica symmetry breaking condition exposed by random matrix calculation of landscape complexity. J. Stat. Phys. 129(5–6), 1081–1116 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Fyodorov, Y.V., Nadal, C.: Critical behavior of the number of minima of a random landscape at the glass transition point and the Tracy-Widom distribution. Phys. Rev. Lett. 109(16), 167203 (2012). [5 pages]

    Article  ADS  Google Scholar 

  19. Auffinger, A., Ben Arous, G., Cerny, C.: Random matrices and complexity of spin glasses. Commun. Pure Appl. Math. 66(2), 165–201 (2013)

    Article  MATH  Google Scholar 

  20. Auffinger, A., Ben Arous, G.: Complexity of random smooth functions of many variables. e-preprint. arXiv:1110.5872

  21. Cugliandolo, L.F., Dean, D.S.: Full dynamical solution for a spherical spin-glass model. J. Phys. A 28, 4213–4234 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Zippold, W., Kuhn, R., Horner, H.: Nonequilibrium dynamics of a simple spherical spin models. Eur. Phys. J. B 13, 531–537 (2000)

    ADS  Google Scholar 

  23. Cugliandolo, L.F., Dean, D.S.: On the dynamics of a spherical spin-glass in a magnetic field. J. Phys. A, Math. Gen. 28, L453–L459 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Fyodorov, Y.V.: High-dimensional random fields and random matrix theory. e-preprint. arXiv:1307.2379

  25. Parisi, G., Rizzo, T.: Large deviations in the free energy of mean-field spin glasses. Phys. Rev. Lett. 101, 117205 (2008). [4pp]

    Article  ADS  Google Scholar 

  26. Parisi, G., Rizzo, T.: Phase diagram and large deviations in the free energy of mean-field spin glasses. Phys. Rev. B 79, 134205 (2009). [12pp]

    Article  ADS  Google Scholar 

  27. Parizi, G., Rizzo, T.: Universality and deviations in disordered systems. Phys. Rev. B 81, 094201 (2010). [6 pp]

    Article  ADS  Google Scholar 

  28. Crisanti, A., Sommers, H.-J.: The spherical p-spin interaction spin glass model: the statics. Z. Phys. B 87(3), 341–354 (1992)

    Article  ADS  Google Scholar 

  29. de Almeida, J.R.L., Thouless, D.J.: Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J. Phys. A 11(5), 983–990 (1978)

    Article  ADS  Google Scholar 

  30. Fyodorov, Y.V., Sommers, H.-J.: Classical particle in a box with random potential: exploiting rotational symmetry of replicated Hamiltonian. Nucl. Phys. B 764(3), 128–167 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Fyodorov, Y.V., Bouchaud, J.P.: Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces. J. Phys. A, Math. Theor. 41, 324009 (2008). [25pp]

    Article  MathSciNet  Google Scholar 

  32. Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. Europhys. Lett. 90, 20002 (2010)

    Article  ADS  Google Scholar 

  33. Dotsenko, V.: Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers. Europhys. Lett. 90, 20003 (2010). Replica Bethe ansatz derivation of the Tracy–Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech. P07010 (2010)

    Article  ADS  Google Scholar 

  34. Dotsenko, V., Klumov, B.: Bethe ansatz solution for one-dimensional directed polymers in random media. J. Stat. Mech., P03022 (2010)

  35. Calabrese, P., Le Doussal, P.: Exact solution for the Kardar-Parisi-Zhang equation with flat initial conditions. Phys. Rev. Lett. 106, 250603 (2011). The KPZ equation with flat initial condition and the directed polymer with one free end. J. Stat. Mech. P06001 (2012)

    Article  ADS  Google Scholar 

  36. Peché, S.: The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Relat. Fields 134, 127–173 (2006)

    Article  MATH  Google Scholar 

  37. Féral, D., Peché, S.: The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys. 272 (2007)

  38. Benaych-Georges, F., Guionnet, A., Maida, M.: Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Electron. J. Probab. 16(60), 1621–1662 (2011)

    MATH  MathSciNet  Google Scholar 

  39. Bassler, K.E., Forrester, P.J., Frankel, N.E.: Edge effects in some perturbations of the Gaussian unitary ensemble. J. Math. Phys. 51, 123305 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  40. Benaych-Georges, F., Guionnet, A., Maida, M.: Large deviations of the extreme eigenvalues of random deformations of matrices. Probab. Theory Relat. Fields 154(3–4), 703–751 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Fyodorov, Y.V.: Level curvature distribution: from bulk to the soft edge of random Hermitian matrices. Acta Phys. Pol. A 120(6), 100–113 (2012). arXiv:1108.0950

    Google Scholar 

  42. von Oppen, F.: Exact distribution of eigenvalues curvatures for time-reversal invariant chaotic systems. Phys. Rev. E 51(3), 2647–2650 (1995)

    Article  ADS  Google Scholar 

  43. Fyodorov, Y.V., Sommers, H.-J.: Universality of “level curvature” distribution for large random matrices: systematic analytical approaches. Z. Phys. B 99(1), 123–135 (1995)

    Article  ADS  Google Scholar 

  44. Mehta, M.L.: Random Matrices, 3rd edn. Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam (2004). xviii+688 pp

    MATH  Google Scholar 

  45. Mehta, D., Stariolo, D.A., Kastner, M.: Energy landscape of the finite-size mean-field 3-spin spherical model. Phys. Rev. E 87, 052143 (2013). [9 pages]

    Article  ADS  Google Scholar 

  46. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709–728 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Parisi, G.: Constraint optimization and statistical mechanics. In: Proc. Int. Sch. Physics ENRICO FERMI, vol. 155, pp. 205–228 (2004). arXiv:cs/0312011

    Google Scholar 

  48. Mézard, M., Parisi, G.: On the solution of the random link matching problems. J. Phys. 48, 1451–1459 (1987)

    Article  Google Scholar 

  49. Parisi, G., Ratieville, M.: On the finite size corrections to some random matching problems. Eur. Phys. J. B 29(3), 457–468 (2002)

    Article  ADS  Google Scholar 

  50. Le Doussal, P., Wiese, K.J.: First-principle derivation of static avalanche-size distribution. Phys. Rev. E 85(6), 061102 (2012). [29pp]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Antonio Auffinger for a useful communication related to the content of the paper [20], to Jean-Philippe Bouchaud and Satya Majumdar for lively discussions of results and encouraging interest in the subject, to Peter Forrester and Mark Mezard for bringing a few relevant references to our attention, and to Ofer Zeitouni for informing us on his forthcoming rigorous large-deviation analysis of the problem. YF was supported by EPSRC grant EP/J002763/1 “Insights into Disordered Landscapes via Random Matrix Theory and Statistical Mechanics”. PLD was supported by ANR Grant No. 09-BLAN-0097-01/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan V. Fyodorov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fyodorov, Y.V., Le Doussal, P. Topology Trivialization and Large Deviations for the Minimum in the Simplest Random Optimization. J Stat Phys 154, 466–490 (2014). https://doi.org/10.1007/s10955-013-0838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0838-1

Keywords

Navigation