Skip to main content
Log in

On Irreversibility and Radiation in Classical Electrodynamics of Point Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The direct interaction theory of electromagnetism, also known as Wheeler-Feynman electrodynamics, is often misinterpreted and found unappealing because of its reference to the absorber and, more importantly, to the so-called absorber condition.

Here we remark that the absorber condition is indeed questionable and presumably not relevant for the explanation of irreversible radiation phenomena in our universe. What is relevant and deserves further scrutiny is the emergent effective description of a source particle in an environment. We therefore rephrase what we consider the relevant calculation by Wheeler and Feynman and comment on the status of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, G.: Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik. Herbert Utz Verlag, München (1997)

    Google Scholar 

  2. Bauer, G., Deckert, D.-A., Dürr, D.: Maxwell-Lorentz dynamics of rigid charges. Commun. Partial Differ. Equ. 38(9), 1519–1538 (2013)

    Article  MATH  Google Scholar 

  3. Bauer, G., Deckert, D.-A., Dürr, D.: On the existence of dynamics in Wheeler-Feynman electromagnetism. Z. Angew. Math. Phys 64, 1–38 (2013)

    MathSciNet  Google Scholar 

  4. Davies, P.C.W.: The Physics of Time Asymmetry. University of California, Berkeley (1977). Reprint

    Google Scholar 

  5. Deckert, D.-A., Dürr, D., Vona, N.: Delay equations of the Wheeler-Feynman type. In: Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations, Part 3, Moscow, August 14–21, 2011. J. Contemp. Math. Fund. Dir., vol. 47, pp. 46–58 (2013). English preprint at arXiv:1212.6285

    Google Scholar 

  6. Dirac, P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 167(929), 148–169 (1938)

    Article  ADS  Google Scholar 

  7. Driver, R.D.: Can the future influence the present? Phys. Rev. D, Part. Fields 19, 1098–1107 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  8. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Mainly Mechanics, Radiation, and Heat, vol. 1. Addison-Wesley, Reading (1963)

    Google Scholar 

  9. Fokker, A.D.: Ein invarianter Variationssatz für die Bewegung mehrerer elektrischer Massenteilchen. Z. Phys. 58, 386–393 (1929)

    ADS  MATH  Google Scholar 

  10. Hogarth, J.E.: Cosmological considerations of the absorber theory of radiation. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 267, 365–383 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Hoyle, F., Narlikar, J.V.: Cosmology and action-at-a-distance electrodynamics. Rev. Mod. Phys. 67(1), 113–155 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)

    MATH  Google Scholar 

  13. Louis-Martinez, D.: Exact solutions of the relativistic many body problem. Phys. Lett. A 320(2–3), 103–108 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Price, H.: Time’s Arrow and Archimedes’ Point. Oxford University Press, New York (1997)

    Book  Google Scholar 

  15. Ridderbos, T.M.: The Wheeler-Feynman absorber theory: a reinterpretation? Found. Phys. Lett. 10(5), 473–486 (1997)

    Article  Google Scholar 

  16. Schild, A.: Electromagnetic two-body problem. Phys. Rev. 131(6), 2762 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Schwarzschild, K.: Zur Elektrodynamik. II. Die elementare elektrodynamische Kraft. Nachr. Ges. Wiss. Goett. 128, 132 (1903)

    Google Scholar 

  18. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  19. Spohn, H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Tetrode, H.: Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik. Z. Phys. A 10, 317–328 (1922)

    Article  Google Scholar 

  21. Wheeler, J.A., Feynman, R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157–181 (1945)

    Article  ADS  Google Scholar 

  22. Wheeler, J.A., Feynman, R.P.: Classical electrodynamics in terms of direct inter-particle action. Rev. Mod. Phys. 21, 425–433 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Sheldon Goldstein, Michael Kiessling, Steve Lyle, and Herbert Spohn for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk-André Deckert.

Additional information

Dedicated to Herbert Spohn on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, G., Deckert, DA., Dürr, D. et al. On Irreversibility and Radiation in Classical Electrodynamics of Point Particles. J Stat Phys 154, 610–622 (2014). https://doi.org/10.1007/s10955-013-0837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0837-2

Keywords

Navigation