Skip to main content
Log in

A Nonequilibrium Extension of the Clausius Heat Theorem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We generalize the Clausius (in)equality to overdamped mesoscopic and macroscopic diffusions in the presence of nonconservative forces. In contrast to previous frameworks, we use a decomposition scheme for heat which is based on an exact variant of the Minimum Entropy Production Principle as obtained from dynamical fluctuation theory. This new extended heat theorem holds true for arbitrary driving and does not require assumptions of local or close to equilibrium. The argument remains exactly intact for diffusing fields where the fields correspond to macroscopic profiles of interacting particles under hydrodynamic fluctuations. We also show that the change of Shannon entropy is related to the antisymmetric part under a modified time-reversal of the time-integrated entropy flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Studies on the heat theorem were started by Clausius since about 1855, with the final emergence of the entropy concept in [1].

References

  1. Clausius, R.: On a modified form of the second fundamental theorem in the mechanical theory of heat. Ann. Phys. (Leipz.) 125, 353 (1865)

    Article  ADS  Google Scholar 

  2. Carnot, S.: Réflexions sur la puissance motrice du feu et sur les machines propres à déveloper cette puissance. Paris (1824)

  3. Maes, C.: Nonequilibrium entropies. Phys. Scr. 86, 058509 (2012)

    Article  Google Scholar 

  4. Komatsu, T.S., Nakagawa, N., Sasa, S.-I., Tasaki, H.: Phys. Rev. Lett. 100, 230602 (2008)

    Article  ADS  Google Scholar 

  5. Komatsu, T.S., Nakagawa, N., Sasa, S.-I., Tasaki, H.: J. Stat. Phys. 134, 401 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Komatsu, T.S., Nakagawa, N.: An expression for stationary distribution in nonequilibrium steady states. Phys. Rev. Lett. 100, 030601 (2008)

    Article  ADS  Google Scholar 

  7. Maes, C., Netočný, K.: Minimum entropy production principle from a dynamical fluctuation law. J. Math. Phys. 48, 053306 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Maes, C., Netočný, K.: Europhys. Lett. 82, 30003 (2008)

    Article  ADS  Google Scholar 

  9. Hatano, T., Sasa, S.-I.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  10. Oono, Y., Paniconi, M.: Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bertini, L., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Thermodynamic transformations of nonequilibrium states. J. Stat. Phys. 149, 773–802 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Bertini, L., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Clausius inequality and optimality of quasistatic transformations for nonequilibrium stationary states. Phys. Rev. Lett. 110, 020601 (2013)

    Article  ADS  Google Scholar 

  13. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  14. Boksenbojm, E., Maes, C., Netočný, K., Pešek, J.: Heat capacity in nonequilibrium steady states. Europhys. Lett. 96, 40001 (2011)

    Article  ADS  Google Scholar 

  15. Maes, C., Salazar, A.: Linear response in the nonequilibrium zero range process. arXiv:1305.4157v1 [cond-mat.stat-mech]

  16. Lebowitz, J.L., Spohn, H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 39, 109–142 (1978)

    Google Scholar 

  17. Pesek, J., Boksenbojm, E., Netočný, K.: Model study on steady heat capacity in driven stochastic systems. Cent. Eur. J. Phys. 10, 692 (2012)

    Article  Google Scholar 

  18. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Phys. Rev. Lett. 94, 030601 (2005)

    Article  ADS  Google Scholar 

  19. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 110, 635 (2002)

    Article  ADS  Google Scholar 

  20. De Groot, S., Mazur, P.O.: Non-Equilibrium Thermodynamics. Dover, New York (1962)

    Google Scholar 

  21. Chetrite, R., Gawedzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Trepagnier, E.H., Jarzynski, C., Ritort, F., Crooks, G.E., Bustamante, C.J., Liphardt, J.: Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Natl. Acad. Sci. USA 101, 15038 (2004)

    Article  ADS  Google Scholar 

  23. Maes, C., Netočný, K., Wynants, B.: Steady state statistics of driven diffusions. Physica A 387, 2675–2689 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Maes, C., Netočný, K., Shergelashvili, B.: Nonequilibrium relation between potential and stationary distribution for driven diffusion. Phys. Rev. E 80, 011121 (2009)

    Article  ADS  Google Scholar 

  25. Maes, C., Netočný, K., Wynants, B.: On and beyond entropy production: the case of Markov jump processes. Markov Process. Relat. Fields 14, 445 (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This work started from discussions with Keiji Saito, Hal Tasaki, Shin-Ichi Sasa and Naoko Nakagawa in January–February 2012. CM wishes to thank the hospitality of the Yukawa institute in Kyoto and of Hisao Hayakawa in particular. KN thanks Shin-Ichi Sasa for fruitful discussions and acknowledges the support from the Grant Agency of the Czech Republic, Grant no. P204/12/0897.

The results of the present paper were first reported on 6 June 2012 at the Isola del Giglio during the workshop on Non-equilibrium fluctuation-response relations, June 5–8, 2012, in parallel with the talk by G. Jona-Lasinio on the work in [11, 12]. In that same context we are also grateful for private communication with K. Gawedzki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Maes.

Additional information

In honor of Herbert Spohn on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maes, C., Netočný, K. A Nonequilibrium Extension of the Clausius Heat Theorem. J Stat Phys 154, 188–203 (2014). https://doi.org/10.1007/s10955-013-0822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0822-9

Keywords

Navigation