Skip to main content
Log in

Quantum Hall Phases and Plasma Analogy in Rotating Trapped Bose Gases

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A bosonic analogue of the fractional quantum Hall effect occurs in rapidly rotating trapped Bose gases: There is a transition from uncorrelated Hartree states to strongly correlated states such as the Laughlin wave function. This physics may be described by effective Hamiltonians with delta interactions acting on a bosonic N-body Bargmann space of analytic functions. In a previous paper (Rougerie et al. in Phys. Rev. A 87:023618, 2013) we studied the case of a quadratic plus quartic trapping potential and derived conditions on the parameters of the model for its ground state to be asymptotically strongly correlated. This relied essentially on energy upper bounds using quantum Hall trial states, incorporating the correlations of the Bose-Laughlin state in addition to a multiply quantized vortex pinned at the origin. In this paper we investigate in more details the density of these trial states, thereby substantiating further the physical picture described in (Rougerie et al. in Phys. Rev. A 87:023618, 2013), improving our energy estimates and allowing to consider more general trapping potentials. Our analysis is based on the interpretation of the densities of quantum Hall trial states as Gibbs measures of classical 2D Coulomb gases (plasma analogy). New estimates on the mean-field limit of such systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. L stands for Landau, referring to the lowest Landau level.

  2. Or rather its fermionic analogue where the exponent of the (z i z j ) factor is an odd number, ensuring fermionic symmetry.

  3. Here and in the sequel we will drop integration elements from integrals when there is no possible confusion.

  4. We could also consider a more general trapping potential in the 3-direction.

  5. We do not change the notation for the scaled quantities.

References

  1. Aftalion, A.: Vortices in Bose-Einstein Condensates. Progress in Nonlinear Differential Equations and Their Applications, vol. 67. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  2. Aftalion, A., Blanc, X.: Reduced energy functionals for a three dimensional fast rotating Bose-Einstein condensate. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25(2), 339–355 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Aftalion, A., Blanc, X., Nier, F.: Vortex distribution in the lowest Landau level. Phys. Rev. A 73, 011601(R) (2006)

    Article  ADS  Google Scholar 

  4. Aftalion, A., Blanc, X., Nier, F.: Lowest Landau level functionals and Bargmann spaces for Bose-Einstein condensates. J. Funct. Anal. 241, 661–702 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blanc, X., Rougerie, N.: Lowest-Landau-level vortex structure of a Bose-Einstein condensate rotating in a harmonic plus quartic trap. Phys. Rev. A 77, 053615 (2008)

    Article  ADS  Google Scholar 

  6. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ben Arous, G., Zeitouni, O.: Large deviations from the circular law. ESAIM, Probab. Stat. 2, 123–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bolley, F., Villani, C.: Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities. Ann. Fac. Sci. Toulouse 6, 331–352 (2005)

    Article  MathSciNet  Google Scholar 

  9. Boyarsky, A., Cheianov, V.V., Ruchayskiy, O.: Microscopic construction of the chiral Luttinger liquid theory of the quantum Hall edge. Phys. Rev. B 70, 235309 (2004)

    Article  ADS  Google Scholar 

  10. Bretin, V., Stock, S., Seurin, Y., Dalibard, J.: Fast rotation of a Bose-Einstein condensate. Phys. Rev. Lett. 92, 050403 (2004)

    Article  ADS  Google Scholar 

  11. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Cappelli, A., Trugenberger, C.A., Zemba, G.R.: Large N limit in the quantum Hall effect. Phys. Lett. B 306, 100 (1993)

    Article  ADS  Google Scholar 

  13. Cooper, N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

    Article  ADS  Google Scholar 

  14. Correggi, M., Yngvason, J.: Energy and vorticity in fast rotating Bose-Einstein condensates. J. Phys. A, Math. Theor. 41, 445002 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.: Critical rotational speeds for superfluids in homogeneous traps. J. Math. Phys. 53, 095203 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.: Rotating superfluids in anharmonic traps: from vortex lattices to giant vortices. Phys. Rev. A 84, 053614 (2011)

    Article  ADS  Google Scholar 

  17. Dalibard, J., Gerbier, F., Juzeliūnas, G., Öhberg, P.: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  18. Di Francesco, P., Gaudin, M., Itzykson, C., Lesage, F.: Laughlin’s wave functions, Coulomb gases and expansions of the discriminant. Int. J. Mod. Phys. A 9, 4257–4351 (1994)

    Article  ADS  MATH  Google Scholar 

  19. Draxler, D.: Bosons in the lowest Landau level in an anharmonic trap: derivation of the mean-field energy functional. Diploma Thesis, University of Vienna (2010)

  20. Fetter, A.L.: Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81, 647–691 (2009)

    Article  ADS  Google Scholar 

  21. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs Series, vol. 34. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  22. Girvin, S.: Introduction to the fractional quantum Hall effect. Sémin. Poincaré 2, 54–74 (2004)

    Google Scholar 

  23. Girvin, S., Jach, T.: Formalism for the quantum Hall effect: Hilbert space of analytic functions. Phys. Rev. B 29, 5617–5625 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  24. de Gail, R., Regnault, N., Goerbig, M.O.: Plasma picture of the fractional quantum Hall effect with internal SU(K) symmetries. Phys. Rev. B 77, 165310 (2008)

    Article  ADS  Google Scholar 

  25. Jansen, S.: Fermionic and bosonic Laughlin state on thick cylinders. J. Math. Phys. 53, 123306 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  26. Jansen, S., Lieb, E.H., Seiler, R.: Symmetry breaking in Laughlin’s state on a cylinder. Commun. Math. Phys. 285, 503–535 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Kiessling, M.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 46, 27–56 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kiessling, M., Spohn, H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199, 683–695 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Laughlin, R.B.: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)

    Article  ADS  Google Scholar 

  30. Laughlin, R.B.: Elementary theory: the incompressible quantum fluid. In: Prange, R.E., Girvin, S.M. (eds.) The Quantum Hall Effect. Springer, Heidelberg (1987)

    Google Scholar 

  31. Levkivskyi, I.P., Fröhlich, J., Sukhorukov, E.V.: Theory of fractional quantum Hall interferometers. Phys. Rev. B 86, 245105 (2012)

    Article  ADS  Google Scholar 

  32. Lewin, M., Seiringer, R.: Strongly correlated phases in rapidly rotating Bose gases. J. Stat. Phys. 137, 1040–1062 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Lieb, E.H.: A lower bound for Coulomb energies. Phys. Lett. A 70, 444–446 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. AMS, Providence (1997)

    Google Scholar 

  35. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  36. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminar Series, vol. 34. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  37. Lieb, E.H., Seiringer, R., Yngvason, J.: The Yrast line of a rapidly rotating Bose gas: the Gross-Pitaevskii regime. Phys. Rev. A 79, 063626 (2009)

    Article  ADS  Google Scholar 

  38. Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys. 29, 561–578 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  39. Morris, A.G., Feder, D.L.: Gaussian potentials facilitate access to quantum hall states in rotating Bose gases. Phys. Rev. Lett. 99, 240401 (2007)

    Article  ADS  Google Scholar 

  40. Neri, C.: Statistical mechanics of the N-point vortex system with random intensities on a bounded domain. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21, 382–399 (2004)

    ADS  MathSciNet  Google Scholar 

  41. Papenbrock, T., Bertsch, G.F.: Rotational spectra of weakly interacting Bose-Einstein condensates. Phys. Rev. A 63, 023616 (2001)

    Article  ADS  Google Scholar 

  42. Regnault, N., Jolicoeur, T.: Quantum hall fractions in rotating Bose-Einstein condensates. Phys. Rev. Lett. 91, 030402 (2004)

    Article  Google Scholar 

  43. Regnault, N., Jolicoeur, T.: Quantum Hall fractions for spinless bosons. Phys. Rev. B 69, 235309 (2004)

    Article  ADS  Google Scholar 

  44. Regnault, N., Chang, C.C., Jolicoeur, T., Jain, J.K.: Composite fermion theory of rapidly rotating two-dimensional bosons. J. Phys. B 39, S89–S99 (2006)

    Article  ADS  Google Scholar 

  45. Roncaglia, M., Rizzi, M., Dalibard, J.: From rotating atomic rings to quantum hall states. Sci. Rep. 1, 43 (2011). doi:10.1038/srep00043. www.nature.com

    Article  ADS  Google Scholar 

  46. Rougerie, N.: Annular Bose-Einstein condensates in the lowest Landau level. Appl. Math. Res. Express 2011, 95–121 (2011)

    MATH  MathSciNet  Google Scholar 

  47. Rougerie, N., Serfaty, S., Yngvason, J.: Quantum Hall states of bosons in rotating anharmonic traps. Phys. Rev. A 87, 023618 (2013)

    Article  ADS  Google Scholar 

  48. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften, vol. 316. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  49. Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. arxiv:1201.3503 (2012)

  50. Smith, R.A., Wilkin, N.K.: Exact eigenstates for repulsive bosons in two dimensions. Phys. Rev. A 62, 061602(R) (2000)

    Article  ADS  Google Scholar 

  51. Stormer, H.L., Tsui, D.C., Gossard, A.C.: The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999)

    Article  Google Scholar 

  52. Viefers, S.: Quantum Hall physics in rotating Bose-Einstein condensates. J. Phys. C 12, 123202 (2008)

    Google Scholar 

  53. Viefers, S., Hansson, T.H., Reimann, S.M.: Bose condensates at high angular momenta. Phys. Rev. A 62, 053604 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

NR thanks Xavier Blanc and Mathieu Lewin for helpful discussions during the early stages of this project. SS is supported by an EURYI award. Funding from the CNRS in the form of a PEPS-PTI project is also acknowledged. JY thanks the Institute Mittag Leffler for hospitality during his stay in the fall of 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yngvason.

Additional information

Dedicated to Herbert Spohn on the occasion of his retirement from the TU München.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rougerie, N., Serfaty, S. & Yngvason, J. Quantum Hall Phases and Plasma Analogy in Rotating Trapped Bose Gases. J Stat Phys 154, 2–50 (2014). https://doi.org/10.1007/s10955-013-0766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0766-0

Keywords

Navigation