Skip to main content
Log in

Spin Chains with Dynamical Lattice Supersymmetry

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the \(\mathcal{N}=(2,2)\) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension possess a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We focus on two-dimensional lattice models which originate from statistical mechanics, and their one-dimensional quantum mechanical pendants (spin chains). Our discussion therefore excludes the wide field of lattice gauge theories with supersymmetry, pioneered in [33] (see e.g. [25] for a comprehensive overview).

  2. The author would like to thank Gaetan Borot for communicating to him this result.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1970)

    Google Scholar 

  2. Ahn, C., Bernard, D., Leclair, A.: Fractional supersymmetries in perturbed coset CFTs and integrable soliton theory. Nucl. Phys. B 346, 409–439 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  3. Alcaraz, F.C., Martins, M.J.: The spin-s XXZ quantum chain with general toroidal boundary conditions. J. Phys. A, Math. Gen. 23, 1439 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Baake, M., von Gehlen, G., Rittenberg, V.: Operator content of the Ashkin-Teller quantum chain, superconformal and Zamolodchikov-Fateev invariance. I. Free boundary conditions. J. Phys. A, Math. Gen. 20, L479 (1987)

    Article  ADS  Google Scholar 

  5. Baake, M., von Gehlen, G., Rittenberg, V.: Operator content of the Ashkin-Teller quantum chain, superconformal and Zamolodchikov-Fateev invariance. II. Boundary conditions compatible with the torus. J. Phys. A, Math. Gen. 20, L487 (1987)

    Article  ADS  Google Scholar 

  6. Babujian, H.M.: Exact solution of the one-dimensional isotropic Heisenberg chain with arbitrary spins S. Phys. Lett. A 90, 479–482 (1982)

    Article  ADS  Google Scholar 

  7. Babujian, H.M.: Exact solution of the isotropic Heisenberg chain with arbitrary spins: thermodynamics of the model. Nucl. Phys. B 215, 317–336 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  8. Baranowski, D., Rittenberg, V.: The operator content of the ferromagnetic and antiferromagnetic spin-1 Zamolodchikov-Fateev quantum chain. J. Phys. A, Math. Gen. 23, 1029 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Batista, C.D., Ortiz, G.: Generalized Jordan-Wigner transformations. Phys. Rev. Lett. 86, 1082–1085 (2001)

    Article  ADS  Google Scholar 

  10. Bazhanov, V.V., Mangazeev, V.V.: Eight-vertex model and non-stationary Lamé equation. J. Phys. A, Math. Gen. 38, L145–L153 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Bazhanov, V.V., Mangazeev, V.V.: The eight-vertex model and Painlevé VI. J. Phys. A, Math. Gen. 39, 12235–12243 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Beccaria, M., de Angelis G.F.: Exact ground state and finite-size scaling in a supersymmetric lattice model. Phys. Rev. Lett. 94, 100401 (2005)

    Article  ADS  Google Scholar 

  13. Beccaria, M., Hagendorf, C.: A staggered fermion chain with supersymmetry on open intervals. arXiv:1206.4194 (2012)

  14. Beisert, N.: The su(2|3) dynamic spin chain. Nucl. Phys. B 682, 487–520 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Beisert, N.: The dilatation operator of N=4 super Yang Mills theory and integrability. Phys. Rep. 405, 1–202 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  16. Beisert, N.: The su(2|3) undynamic spin chain. Prog. Theor. Phys. Suppl. 177, 1–11 (2009)

    Article  ADS  MATH  Google Scholar 

  17. Beisert, N., Zwiebel, B.I.: On symmetry enhancement in the psu(1,1|2) sector of \(\mathcal{N} = 4\) SYM. J. High Energy Phys. 10, 31 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. Bérkovich, A., Gómez, C., Sierra, G.: Spin-anisotropy commensurable chains. Quantum group symmetries and N=2 SUSY. Nucl. Phys. B 415, 681–733 (1994)

    Article  ADS  MATH  Google Scholar 

  19. Bernard, D., Felder, G.: Quantum group symmetries in two-dimensional lattice quantum field theory. Nucl. Phys. B 365, 989–1120 (1991)

    Article  MathSciNet  Google Scholar 

  20. Bernard, D., LeClair, A.: Quantum group symmetries and non-local currents in 2D QFT. Commun. Math. Phys. 142, 99–138 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  21. Bernard, D., LeClair, A.: The fractional supersymmetric sine-Gordon models. Phys. Lett. B 247, 309–316 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  22. Bytsko, A.G.: On integrable Hamiltonians for higher spin XXZ chain. J. Math. Phys. 44, 3698–3717 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Cantini, L., Sportiello, A.: Proof of the Razumov-Stroganov conjecture. J. Comb. Theory 118, 1549–1574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cantini, L., Sportiello, A.: A one-parameter refinement of the Razumov-Stroganov correspondence. arXiv:1202.5253 (2012)

  25. Catterall, S., Kaplan, D.B., Ünsal, M.: Exact lattice supersymmetry. Phys. Rep. 484, 71–130 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. Crampé, N., Ragoucy, E., Alonzi, L.: Coordinate Bethe ansatz for spin-s XXX model. SIGMA 7, 6 (2011)

    Google Scholar 

  27. Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models: local height probabilities and theta function identities. Nucl. Phys. B 290, 231–273 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. de Gier, J., Batchelor, M.T., Nienhuis, B., Mitra, S.: The XXZ spin chain at Δ=−1/2: Bethe roots, symmetric functions, and determinants. J. Math. Phys. 43, 4135–4146 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Di Francesco, P., Zinn-Justin, P.: Around the Razumov-Stroganov conjecture: proof of a multi-parameter sum rule. Electron. J. Comb. 12, R6 (2005)

    MathSciNet  Google Scholar 

  30. Di Francesco, P., Zinn-Justin, P.: Quantum Knizhnik-Zamolodchikov equation, totally symmetric self-complementary plane partitions and alternating sign matrices. Theor. Math. Phys. 154, 331–348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Di Francesco, P., Zinn-Justin, P., Zuber, J.: Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain. J. Stat. Mech. 8, 11 (2006)

    Google Scholar 

  32. Dixon, L., Ginsparg, P., Harvey, J.: \(\hat{c}=1\) superconformal field theory. Nucl. Phys. B 306, 470–496 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  33. Dondi, P.H., Nicolai, H.: Lattice supersymmetry. Nuovo Cim., A 41, 1–13 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  34. Essler, F.H.L., Korepin, V.E.: Higher conservation laws and algebraic Bethe ansätze for the supersymmetric tJ model. Phys. Rev. B 46, 9147–9162 (1992)

    Article  ADS  Google Scholar 

  35. Fateev, V.A.: A factorized S-matrix for particles of opposite parities and an integrable 21-vertex statistical model. Sov. J. Nucl. Phys. 33, 761–766 (1981)

    MathSciNet  Google Scholar 

  36. Fendley, P.: Private communication (2012)

  37. Fendley, P., Hagendorf, C.: Exact and simple results for the XYZ and strongly interacting fermion chains. J. Phys. A, Math. Theor. 43, 402004 (2010)

    Article  MathSciNet  Google Scholar 

  38. Fendley, P., Hagendorf, C.: Ground-state properties of a supersymmetric fermion chain. J. Stat. Mech. 1102, P02014 (2011)

    Article  Google Scholar 

  39. Fendley, P., Schoutens, K.: Exact results for strongly correlated fermions in 2+1 dimensions. Phys. Rev. Lett. 95, 046403 (2005)

    Article  ADS  Google Scholar 

  40. Fendley, P., Nienhuis, B., Schoutens, K.: Lattice fermion models with supersymmetry. J. Phys. A, Math. Gen. 36, 12399–12424 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Fendley, P., Schoutens, K., de Boer, J.: Lattice models with N=2 supersymmetry. Phys. Rev. Lett. 90, 120402 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  42. Fendley, P., Schoutens, K., van Eerten, H.: Hard squares with negative activity. J. Phys. A, Math. Gen. 38, 315–322 (2005)

    Article  ADS  MATH  Google Scholar 

  43. Frahm, H., Martins, M.J.: Finite size properties of staggered U q [sl(2|1)] superspin chains. Nucl. Phys. B 847, 220–246 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Francesco, P.D., Saleur, H., Zuber, J.B.: Generalized Coulomb-gas formalism for two-dimensional critical models based on SU(2) coset construction. Nucl. Phys. B 300, 393–432 (1988)

    Article  ADS  Google Scholar 

  45. Fredenhagen, S., Restuccia, C., Sun, R.: The limit of N=(2,2) superconformal minimal models. arXiv:1204.0446 (2012)

  46. Friedan, D., Qiu, Z., Shenker, S.: Superconformal invariance in two dimensions and the tricritical Ising model. Phys. Lett. B 151, 37–43 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  47. Gaberdiel, M.R., Suchanek, P.: Limits of minimal models and continuous orbifolds. J. High Energy Phys. 2012, 1–30 (2012)

    Google Scholar 

  48. Grabowski, M.P., Mathieu, P.: Integrability test for spin chains. J. Phys. A, Math. Gen. 28, 4777 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Hagendorf, C., Fendley, P.: The eight-vertex model and lattice supersymmetry. J. Stat. Phys. 146, 1122–1155 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Hagendorf, C.: (2013, to be published)

  51. Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press, San Diego (1973)

    MATH  Google Scholar 

  52. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford University Press, London (2008)

    MATH  Google Scholar 

  53. Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Am. Math. Soc., Providence (2003)

    MATH  Google Scholar 

  54. Huijse, L.: A supersymmetric model for lattice fermions. PhD thesis, Universiteit van Amsterdam (2010)

  55. Huijse, L.: Detailed analysis of the continuum limit of a supersymmetric lattice model in 1D. J. Stat. Mech. 2011(04), P04004 (2011)

    Article  Google Scholar 

  56. Huijse, L., Schoutens, K.: Superfrustration of charge degrees of freedom. Eur. Phys. J. B 64, 543–550 (2008)

    Article  ADS  Google Scholar 

  57. Huijse, L., Schoutens, K.: Supersymmetry, lattice fermions, independence complexes and cohomology theory. Adv. Theor. Math. Phys. 14, 643–694 (2010)

    MathSciNet  MATH  Google Scholar 

  58. Huijse, L., Halverson, J., Fendley, P., Schoutens, K.: Charge frustration and quantum criticality for strongly correlated fermions. Phys. Rev. Lett. 101, 146406 (2008)

    Article  ADS  Google Scholar 

  59. Huijse, L., Moran, N., Vala, J., Schoutens, K.: Exact ground states of a staggered supersymmetric model for lattice fermions. Phys. Rev. B 84, 115124 (2011)

    Article  ADS  Google Scholar 

  60. Huijse, L., Mehta, D., Moran, N., Schoutens, K., Vala, J.: Supersymmetric lattice fermions on the triangular lattice: superfrustration and criticality. New J. Phys. 14, 073002 (2012)

    Article  ADS  Google Scholar 

  61. Johannesson, H.: Central charge for the integrable higher-spin XXZ model. J. Phys. A, Math. Gen. 21, L611 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  62. Jonsson, J.: Hard squares with negative activity and rhombus tilings of the plane. Electron. J. Comb. 13, R67 (2006)

    MathSciNet  ADS  Google Scholar 

  63. Jonsson, J.: Certain homology cycles of the independence complex of grids. Discrete Comput. Geom. 43, 927–950 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kasatani, M., Pasquier, V.: On polynomials interpolating between the stationary state of a O(n) model and a Q.H.E. ground state. Commun. Math. Phys. 276, 397 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Kassel, C.: Quantum Groups. Springer, Berlin (1994)

    Google Scholar 

  66. Kirillov, A.N., Reshetikhin, N.Y.: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum. J. Phys. A, Math. Gen. 20, 1565–1585 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  67. Klümper, A., Schadschneider, A., Zittartz, J.: Equivalence and solution of anisotropic spin-1 models and generalized tJ fermion models in one dimension. J. Phys. A, Math. Gen. 24, L955 (1991)

    Article  ADS  Google Scholar 

  68. Konno, H.: Fusion of Baxter’s elliptic R-matrix and the vertex-face correspondence. Ann. Henri Poincaré 7, 1555–1567 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Kulish, P., Reshetikhin, N., Sklyanin, E.: Yang-Baxter equation and representation theory: I. Lett. Math. Phys. 5, 393–403 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Kuperberg, G.: Symmetry classes of alternating-sign matrices under one roof. Ann. Math. 156, 835–866 (2002)

    Article  MathSciNet  Google Scholar 

  71. Lerche, W., Vafa, C., Warner, N.P.: Chiral rings in N=2 superconformal field theories. Nucl. Phys. B 324, 427–474 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  72. Loday, J.L.: Cyclic Cohomology. Springer, Berlin/Heidelberg (1992)

    Google Scholar 

  73. Maassarani, Z., Nemeschansky, D., Warner, N.P.: Lattice analogues of N=2 superconformal models via quantum-group truncation. Nucl. Phys. B 393, 523–546 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Mangazeev, V.V.: Picard solution of Painlevé VI and related tau-functions. arXiv:1002.2327 (2010)

  75. Mangazeev, V.V., Bazhanov, V.V.: The eight-vertex model and Painlevé VI equation II: Eigenvector results. J. Phys. A, Math. Theor. 43, 085206 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  76. Nemeschansky, D., Warner, N.P.: Off-critical lattice analogues of N=2 supersymmetric quantum integrable models. Nucl. Phys. B 413, 629–652 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. Nicolai, H.: Supersymmetry and spin systems. J. Phys. A, Math. Gen. 9, 1497–1506 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  78. Okamoto, K.: Studies on the Painlevé equations. I: Sixth Painlevé equation PVI. Ann. Mat. Pura Appl. 146, 337–381 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  79. Onofri, E., Veneziano, G., Wosiek, J.: Supersymmetry and combinatorics. Commun. Math. Phys. 274, 343–355 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys. B 330, 523–556 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  81. Qiu, Z.: Supersymmetry, two-dimensional critical phenomena and the tricritical Ising model. Nucl. Phys. B 270, 205–234 (1986)

    Article  ADS  Google Scholar 

  82. Razumov, A.V., Stroganov, Y.G.: Spin chains and combinatorics. J. Phys. A, Math. Gen. 34, 3185–3190 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. Razumov, A.V., Stroganov, Y.G.: Spin chains and combinatorics: twisted boundary conditions. J. Phys. A, Math. Gen. 34, 5335–5340 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Razumov, A.V., Stroganov, Y.G.: A possible combinatorial point for the XYZ spin chain. Theor. Math. Phys. 164, 977–991 (2010)

    Article  Google Scholar 

  85. Razumov, A.V., Stroganov, Y.G., Zinn-Justin, P.: Polynomial solutions of qKZ equation and ground state of XXZ spin chain at Δ=−1/2. J. Phys. A, Math. Gen. 40, 11827–11847 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. Robbins, D.P.: Symmetry classes of alternating sign matrices. arXiv:math.CO/0008045 (2000)

  87. Rosengren, H.: An Izergin-Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices. Adv. Appl. Math. 43, 137–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Rosengren, H.: The three-colour model with domain wall boundary conditions. Adv. Appl. Math. 46, 481–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  89. Santachiara, R., Schoutens, K.: Supersymmetric model of spin-1/2 fermions on a chain. J. Phys. A, Math. Gen. 38, 5425–5439 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. Saleur, H.: Geometric lattice models for N=2 supersymmetric theories in two dimensions. Nucl. Phys. B 382, 532–560 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  91. Saleur, H., Warner, N.: Lattice models and N=2 supersymmetry. In: String Theory, Conformal Models and Topological Field Theories. Nato ASI Series B. Plenum, New York (1995)

    Google Scholar 

  92. Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253–316 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  93. Witten, E., Olive, D.: Supersymmetry algebras that include topological charges. Phys. Lett. B 78, 97–101 (1978)

    Article  ADS  Google Scholar 

  94. Yang, S.K.: Modular invariant partition function of the Ashkin-Teller model on the critical line and N=2 superconformal invariance. Nucl. Phys. B 285, 183–203 (1987)

    Article  ADS  Google Scholar 

  95. Yang, S.K., Zheng, H.B.: Superconformal invariance in the two-dimensional Ashkin-Teller model. Nucl. Phys. B 285, 410–422 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  96. Yang, X., Fendley, P.: Non-local spacetime supersymmetry on the lattice. J. Phys. A, Math. Gen. 37, 8937–8948 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. Zamolodchikov, A.B., Fateev, V.A.: A model factorized S-matrix and an integrable spin-1 Heisenberg chain. Sov. J. Nucl. Phys. 32, 298–303 (1981)

    Google Scholar 

  98. Zinn-Justin, P.: Sum rule for the eight-vertex model on its combinatorial line. arXiv:1202.4420 (2012)

Download references

Acknowledgements

This work was supported by the ERC AG CONFRA and by the Swiss NSF. The author would like to thank Paul Fendley for many stimulating discussions, Luigi Cantini, Yacine Ikhlef, Rinat Kashaev, Anita Ponsaing, Robert Weston and Paul Zinn-Justin for discussions, and Aglaia Myropolska for explaining to him how to colour the cycle. Furthermore, the author thanks Liza Huijse for her comments on the manuscript. Finally, he thanks Gaetan Borot and Don Zagier for pointing out the solution to the Witten index computation for the trigonometric models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hagendorf.

Appendices

Appendix A: Trigonometric Supercharges

In this appendix we explain a constructive way to arrive at (18). Our strategy is the following. We specialise first the matrix elements h (r,s),(m,n) to the diagonal case (r,s)=(m,n), and construct a particular solution which is invariant under spin reversal. Second, in the main text, we show that this solution satisfies indeed the spin-reversal symmetry even for off-diagonal matrix elements. We start thus by considering the matrix element b m,n =h (m,n),(m,n), given by

$$ b_{m,n} = a_{m+n+1,m}^2 + \frac{1}{2} \Biggl(\, \sum_{k=0}^{m-1}a_{m,k}^2 +\sum_{k=0}^{n-1}a_{n,k}^2 \Biggr). $$

First, set m=n=0. We impose b 00=b ℓℓ , and thus have

$$ a_{1,0}^2 = \sum_{k=0}^{\ell-1}a_{\ell,k}^2. $$

Next, consider the equation b 0,n =b ,n . Using the previous result we find that

$$ a_{\ell-n+1,0}^2 + \frac{1}{2}\sum _{k=0}^{\ell-n-1}a_{\ell-n,k}^2 = \frac{1}{2}a_{1,0}^2 +\frac{1}{2}\sum _{k=0}^{n-1}a_{n,k}^2. $$

Replacing now nn and subtracting both equations, we find a useful symmetry property:

$$ a_{m,0}^2+a_{\ell+2-m,0}^2 = a_{1,0}^2, \quad m = 2,\dots\ell. $$
(37)

Now impose b m,1=b m,−1. For m=0,…,−2 it follows that

$$ a_{m+2,1}^2=\frac{1}{2} \Biggl(\,\sum _{k=0}^{\ell-m-1}a_{\ell -m,k}^2+\sum _{k=0}^{\ell-2}a_{\ell-1,k}^2- \sum_{k=0}^{m-1}a_{m,k}^2 \Biggr)-\frac{1}{2}a_{1,0}^2. $$

In particular, the case m=0 leads to \(a_{2,1}^{2}= a_{2,0}^{2} = \sum_{k=0}^{\ell-2}a_{\ell-1,k}^{2}/2\), and thus to

$$ a_{m+2,1}^2=\frac{1}{2} \Biggl(\,\sum _{k=0}^{\ell-m-1}a_{\ell -m,k}^2-\sum _{k=0}^{m-1}a_{m,k}^2 \Biggr)+a_{2,0}^2-\frac{1}{2}a_{1,0}^2. $$

Again, we notice that the expression in brackets is antisymmetric under mm. This allows to derive the equation

$$ a_{m+2,1}^2+ a_{\ell+2-m,1}^2 = 2a_{2,0}^2-a_{1,0}^2. $$

The left-hand side can be reduced with the help of the recursion relation (16), and thus everything can be rewritten in terms of \(a_{m,0}^{2}\). After a little algebra, we find the non-linear recursion relation

$$ a_{m+2,0}^2a_{m+1,0}^2 + \bigl(a_{1,0}^2-a_{m+1,0}^2\bigr) \bigl(a_{1,0}^2-a_{m,0}^2\bigr) = a_{1,0}^2\bigl(2a_{2,0}^2-a_{1,0}^2 \bigr). $$

We will now show that it admits a particular solution related to a linear recursion relation. To this end, set \(a_{m,0}^{2} = z_{m}/z_{m-1}\) and normalise z 0=1. We find that

$$ z_{m-1}(z_{m+2}-z_1z_{m+1}+z_m) + z_{m}\bigl(z_{m+1}-z_1z_m + \bigl(2\bigl(z_1^2-z_2\bigr)-1 \bigr)z_{m-1}\bigr)=0. $$

This relation holds certainly if we choose for z m as solution of the equation

$$ z_{m+2}-z_1z_{m+1}+z_m = 0, \quad \mbox{with} \ z_0 = 1,\ z_0=0. $$

This is the recursion relation for the Chebyshev polynomials of the second kind. We prefer to use q-integers and thus write

$$ z_m = [m+1], \qquad[n] = \frac{q^n-q^{-n}}{q-q^{-1}},\quad\mbox {with}\ q=e^{i\eta}. $$

The phase η is not arbitrary as we have to respect the symmetry relation (37). After some algebra, one finds that this relation implies sin(+2)η=0. The unique choice for η to keep all the \(a_{m,0}^{2}\) positive is η=π/(+2). Hence, q takes the root-of-unity value

$$ q = e^{\mathrm{i}\pi/(\ell+2)}. $$

Thus, we have [m++2]=−[m]=[−m]. Hence, we find

$$ a_{m,0}^2= \frac{[m+1]}{[m]}. $$

The general coefficients a m,k are obtained from the recursion relation (16). This completes the derivation of the constants (18).

Appendix B: Special Polynomials

Bazhanov and Mangazeev introduced in [11, 75] a series of polynomials s n (z), n∈ℤ, which appear as components in the ground-state vectors of the spin-1/2 XYZ Hamiltonian (13a), (13b), and sum rules (see also the related work of Razumov and Stroganov [84]). A sum rule for the square norm was recently proved by Zinn-Justin [98].

These polynomials appear to be not only off-critical generalisations of the combinatorial numbers found in the ground states of various variants of the spin-1/2 XXZ chain at Δ=−1/2, but display also an interesting relation to classical integrability, namely to certain tau-function hierarchies associated to the Painlevé VI equation. They are solutions to the non-linear difference-differential equation

with s 0(z)=s 1(z)≡1. This equation can be understood as a result of special Bäcklund transformations for Painlevé VI [74, 78]. It is far from being evident that its solutions are polynomials for the given initial conditions. Various properties of the solutions to this equation were conjectured in [75]. For our purposes, the factorisation properties are relevant. In fact, the authors claim that for any k∈ℤ one has

$$ s_{2k+1}\bigl(w^2\bigr) = s_{2k+1}(0)p_k(w)p_k(-w), \quad p_k(0)=1, $$
(38)

where the p k (w) are polynomials of degree degp k (w)=k(k+1) with positive integer coefficients. We have the transformation symmetry

$$ p_k(w)= \biggl(\frac{1+3w}{2} \biggr)^{k(k+1)}p_k \biggl(\frac {1-w}{1+3w} \biggr). $$

The p k (w)’s are the polynomials appearing in the zero-energy states of the twisted elliptic Fateev-Zamolodchikov chain at x=±1/2, yζ/2.

Appendix C: Counting Momentum States

In this appendix, we use the classical theory of necklace enumeration in order to count certain momentum states for a spin-/2 chain with N sites [51].

We consider thus a chain/necklace with N beads or equivalently a periodic lattice with N sites. Each site of this graph, labelled by some integer j=1,…,N, can be coloured with a colour m j =0,1,…,. Thus, a colouring/configuration is given by an N-tuple μ=(m 1,…,m N−1,m N ). We denote by X the set of all possible configurations. There is a natural action of the cyclic group, generated by the cyclic shift T, on X through T⋅(m 1,…,m N−1,m N )=(m N ,m 1,…,m N−1). We will study the fixed points of this group action. This is motivated by the fact that the elements of X are labels of the Hilbert space of the spin chain.

Momentum States

To each μ=(m 1,…,m N−1,m N )∈X we associate a basis vector |μ〉=|m 1,…,m N−1,m N 〉 in V N where V≃ℂ+1 as in Sect. 2. The translation operator on V N acts according to T|μ〉=|Tμ〉 (we use the same notation for it acting on the vector space and the set X). Out of any basis state |μ〉 we build a momentum state

$$ |\psi_\mu\rangle= \sum_{j=0}^{N-1}e^{-\mathrm{i}j k} T^j|\mu \rangle ,\qquad T|\psi_\mu\rangle= e^{\mathrm{i}k}|\psi_\mu\rangle, $$

where k=2πm/N, m=0,1,…,N−1 is the momentum. |ψ μ 〉 may be zero what implies that the configuration μ is incompatible with the given momentum k. In fact, for each configuration μX there is a minimal positive integer r such that T rμ=μ. We call r the symmetry factor of μ. For the momentum state to be non-zero we need

$$ r \in p\mathbb{N} \quad\mbox{with} \ p = \frac{N}{\gcd(N,m)}. $$

Motivated by the main text, our aim is to count all momentum states with k=0 for N odd, and k=π for N even, with given total particle number

$$ M = \sum_{j=1}^N m_j. $$

Chains of Odd Length

We start with N odd. A momentum state may be generated by two different configurations μ,μ′ if they can be mapped onto each other through a suitable translation. This induces an equivalence relation on the set of configurations, and thus our task consists of counting the number ν MN of equivalence classes (or equivalently the number of orbits in the set of configurations generated by the action of T).

We denote by \(X^{m}_{M} \subset X\) the set of all configurations with given M which are stable under the action of T m. According to Burnside’s lemma, we have

$$ \nu_{MN} = \frac{1}{N}\sum_{m=0}^{N-1}\big|X^m_M\big|. $$
(39)

Therefore, we need to evaluate \(|X^{m}_{M}|\). The case m=0 is the simplest: we just need to count all possible configurations for given M. Let us thus consider m=1: in this case all sites need to have equal colour because a single translation (cyclic shift) has only one cycle. Hence, \(X^{1}_{M}\) contains a single configuration of colour j if and only if M=jN for some integer j=0,1,…,, in other words if N|M as long as MℓN. We abbreviate \(a_{N}(M)=|X^{1}_{M}|\). For m>1 there various distinct cycles. It is a classical result that their number is given by gcd(N,m), and therefore they have length r m =N/gcd(N,m). For each cycle, we have however the same problem as for m=1. Hence, we find the general result

$$ \big|X_M^{m}\big| = \sum_{M_1,\dots,M_{\gcd(N,m)}=0}^\infty \Biggl(\,\prod_{j=1}^{\gcd(N,m)}a_{r_m}(M_j) \Biggr)\delta_{M,\sum _{j=1}^{\gcd(N,m)} {M_j}}. $$
(40)

We notice a typical convolution structure. It is therefore useful to introduce the generating function \(\mathcal{A}_{N}(z)\) for the numbers a N (M) where z is the conjugate variable of M. We obtain

$$ \mathcal{A}_N(z) = \sum_{M=0}^\infty a_{N}(M)z^M = \frac{1-z^{(\ell +1) N}}{1-z^N}. $$

We use this in (40) and find the generating series

$$ \sum_{M=0}^\infty\big|X_M^m\big|z^M = \mathcal{A}_{r_m}(z)^{\gcd(N,m)}= \biggl(\frac{1-z^{(\ell+1)N/\gcd(N,m)}}{1-z^{N/\gcd(N,m)}} \biggr)^{\gcd(N,m)}. $$

Performing the sum with respect to m leads to the generating function f N (z) given in the main text for odd N.

Chains of Even Length

Next, we treat the case of even N and momentum k=π. Thus, we want to count the number of all representatives with even symmetry factor r. It seems natural to modify (39) in such a way that only fixed points of T m with even m are retained. Thus, we attempt to discard all contributions with odd m and write \(1/N \sum_{m=0}^{N/2-1}|X_{M}^{2m}|\). Yet, in this way we count some unwanted configurations. Indeed for m>0, if we decompose \(2m = 2^{k_{m}}b_{m}\) with b m an odd integer, and k m ≥1 some integer, then the fixed points of T 2m contain the fixed points of \(T^{b_{m}}\). These need to be subtracted. For m=0 we need to subtract the fixed points of \(T^{b_{N/2}}\). Thus we arrive at

$$ \nu_{MN} = \frac{1}{N} \Biggl(\,\sum _{m=0}^{N/2-1}\big|X_M^{2m}\big|-\sum _{m=1}^{N/2}\big|X_{M}^{b_m}\big| \Biggr) \quad\mbox{for even } N. $$

The sum can be rearranged in a convenient way. To this end observe in (40) that \(|X_{M}^{m}|\) depends on m only through gcd(N,m). In order to rearrange the sum we need the following lemma:

Lemma 1

Let N be even and consider c m =gcd(N,b m ) for m=1,2,…,N/2. We have c m+N/2=c m . Furthermore, let p=b N/2 then it follows that c m+(p−1)/2=gcd(N,2m−1).

Proof

The proof is entirely based on two simple identities. Let m and n be positive integers. (i) if m>n then we may write gcd(m,n)=gcd(mn,n); (ii) if n is odd then gcd(m,n)=gcd(2m,n). From the second identity it follows in particular that gcd(b m ,n)=gcd(m,n) for odd n. Furthermore we find gcd(b m ,n)=gcd(m,b n )=gcd(b m ,b n ).

For the first part, use b N =b N/2 and write

For the second part, use b N =b N/2=p and write

This proves the claim. □

Combining the implicit dependence of \(|X_{M}^{b_{m}}|\) on c m =gcd(N,b m ) with the periodicity and shift properties given by this lemma, we obtain

$$ \sum_{m=1}^{N/2}\big|X_{M}^{b_m}\big| = \sum_{m=1}^{N/2}\big|X_{M}^{2m-1}\big|. $$

Putting everything together we thus find

$$ \nu_{MN} = \frac{1}{N} \Biggl(\,\sum _{m=0}^{N/2-1}\big|X_M^{2m}\big|-\sum _{m=1}^{N/2}\big|X_{M}^{b_m}\big| \Biggr) = \frac{1}{N}\sum_{m=0}^{N-1}(-1)^m \big|X_M^{m}\big|\quad\mbox{for even } N. $$

Hence, we proved the extra factor (−1)m for even N. Computing the generating function we obtain the result given in the main text.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagendorf, C. Spin Chains with Dynamical Lattice Supersymmetry. J Stat Phys 150, 609–657 (2013). https://doi.org/10.1007/s10955-013-0709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0709-9

Keywords

Navigation