Skip to main content
Log in

Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Motivated by isotropic fully developed turbulence, we define a theory of symmetric matrix valued isotropic Gaussian multiplicative chaos. Our construction extends the scalar theory developed by J.P. Kahane in 1985.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  2. Albeverio, S., Gallavotti, G., Høegh-Krohn, R.: Some results for the exponential interaction in two or more dimensions. Commun. Math. Phys. 70, 187–192 (1979)

    Article  ADS  MATH  Google Scholar 

  3. Bacry, E., Kozhemyak, A., Muzy, J.-F.: Continuous cascade models for asset returns. J. Econ. Dyn. Control 32(1), 156–199 (2008). doi:10.1016/j.jedc.2007.01.024. Available at www.cmap.polytechnique.fr/~bacry/biblio.html

    Article  MathSciNet  MATH  Google Scholar 

  4. Barral, J., Jin, X., Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and KPZ duality. arXiv:1202.5296v2

  5. Benjamini, I., Schramm, O.: KPZ in one dimensional random geometry of multiplicative cascades. Commun. Math. Phys. 289(2), 653–662 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bergère, M., Eynard, B.: Some properties of angular integrals. J. Phys. A, Math. Theor. 42, 265201 (2009)

    Article  ADS  Google Scholar 

  7. Brézin, E., Hikami, S.: An extension of the HarishChandra-Itzykson-Zuber integral. Commun. Math. Phys. 235, 125 (2003)

    Article  ADS  MATH  Google Scholar 

  8. Chevillard, L., Robert, R., Vargas, V.: A stochastic representation of the local structure of turbulence. Europhys. Lett. 89, 54002 (2010)

    Article  ADS  Google Scholar 

  9. Chevillard, L., Castaing, B., Arneodo, A., Lévêque, E., Pinton, J.-F., Roux, S.G.: A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows. C. R. Phys. (2012). doi:10.1016/j.crhy.2012.09.002

    MATH  Google Scholar 

  10. Collins, B., Guionnet, A., Maurel Segala, E.: Asymptotics of orthogonal and unitary matrix integrals. Adv. Math. 222, 172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. David, F.: Conformal field theories coupled to 2-D gravity in the conformal Gauge. Mod. Phys. Lett. A 3, 1651 (1988)

    Article  ADS  Google Scholar 

  12. Duchon, J., Robert, R., Vargas, V.: Forecasting volatility with the multifractal random walk model. Math. Finance 22(1), 83–108 (2012). doi:10.1111/j.1467-9965.2010.00458.x

    Article  MathSciNet  Google Scholar 

  13. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes equations and turbulence. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  15. Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  16. Gneiting, T.: Criteria of Polya type for radial positive definite functions. Proc. Am. Math. Soc. 129(8), 2309–2318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Qué. 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301 (1941) [in Russian]. English translation: Proc. R. Soc. Lond. Ser. A 434, 9 (1991)

    ADS  Google Scholar 

  19. Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence. J. Fluid Mech. 13, 83–85 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  20. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D-quantum gravity. Mod. Phys. Lett. A 3(8), 819–826 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  21. Mandelbrot, B.B.: A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence. In: Statistical Models and Turbulence, La Jolla, CA. Lecture Notes in Phys., vol. 12, pp. 333–351. Springer, Berlin (1972)

    Chapter  Google Scholar 

  22. Mehta, M.L.: Random Matrices. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  23. Pasenchenko, O.Y.: Sufficient conditions for the characteristic function of a two-dimensional isotropic distribution. Theory Probab. Math. Stat. 53, 149–152 (1996)

    MathSciNet  Google Scholar 

  24. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358–371 (2011)

    Article  MathSciNet  Google Scholar 

  25. Rhodes, R., Vargas, V.: Multidimensional multifractal random measures. Electron. J. Probab. 15, 241–258 (2010). Paper No. 9

    MathSciNet  MATH  Google Scholar 

  26. Robert, R., Vargas, V.: Hydrodynamic turbulence and intermittent random fields. Commun. Math. Phys. 284(3), 649–673 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Robert, R., Vargas, V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605–631 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Krzysztof Gawȩdzki, Alice Guionnet and Raoul Robert for fruitful discussions, and grant ANR-11-JCJC CHAMU for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Rhodes.

Appendix

Appendix

1.1 A.1 Discussion About the Construction of Kernels

In this subsection, we discuss in further detail the construction of the kernel K as summarized in Remark 2. In dimension 1 and 2, it is plain to see that

$$ \ln_+\frac{L}{|x|}=\int_0^{+\infty}\bigl (t-|x|\bigr)_+ \nu_L(dt) $$
(19)

where the measure ν L is given by (δ u stands for the Dirac mass at u):

$$\nu_L(dt)=\mathbf{1}_{[0,L]}(t)\frac{dt}{t^2}+ \frac{1}{L}\delta_L(dt). $$

Hence, for every μ>0, we have

$$\ln_+\frac{L}{|x|}=\frac{1}{\mu}\ln_+\frac{L^\mu}{|x|^\mu}=\int _0^{+\infty}\bigl(t-|x|^\mu\bigr)_+ \nu_{L^\mu}(dt). $$

We are therefore led to consider μ>0 such that the function x↦(1−|x|μ)+ is positive definite, the so-called Kuttner-Golubov problem (see [16]).

For d=1, it is straightforward to check that (1−|x|)+ is positive definite. We can thus consider a Gaussian process X ϵ with covariance kernel given by

$$K_\epsilon(x)=\gamma^2\int_{\epsilon}^{L}\bigl(t-|x|\bigr)_+ \nu_L(dt). $$

Notice that

$$ \forall x\neq0,\quad\gamma^2\ln_+ \frac{L}{|x|}=\lim_{\epsilon \to0}K_\epsilon(x) $$
(20)

and

$$ \forall\epsilon<|x|\leqslant L,\quad K_\epsilon(x)= \gamma^2\int_{|x|}^{L}\bigl(t-|x|\bigr)_+ \nu_L(dt)=\gamma^2\ln_+\frac{L}{|x|} . $$
(21)

In dimension 2, we can use the same strategy since Pasenchenko [23] proved that the mapping x↦(1−|x|1/2)+ is positive definite over ℝ2. We can thus consider a Gaussian process X ϵ with covariance kernel given by

$$K_\epsilon(x)=2\gamma^2\int_{\epsilon ^{1/2}}^{L^{1/2}} \bigl(t-|x|^{1/2}\bigr)_+\nu_{L^{1/2}}(dt), $$

sharing the same properties (20) and (21).

In dimension 3, it is not known whether the mapping \(x\mapsto\ln _{+}\frac{L}{|x|}\) admits an integral representation of the type explained above. Nevertheless it is positive definite so that we can use the convolution techniques developed in [27]. In dimension 4, it is not positive definite [27] so that another construction is required. We explain the methods in [25]. We set the dimension d to be larger than d⩾3. Let us denote by S the sphere of ℝd and σ the surface measure on the sphere such that σ(S)=1. Remind that this measure is invariant under rotations. We define the function

$$ \forall x\in\mathbb{R}^d,\quad F(x)= \gamma^2\int_S\ln_+\frac {L}{|\langle x,s\rangle|} \sigma(ds). $$
(22)

It is plain to see that F is an isotropic function. Let us compute it over a neighborhood of 0: for |x|⩽L, we can write x=|x|e x with e x S. Then we have

$$F(x)=\gamma^2\int_S\ln\frac{L}{|x||\langle e_x,s\rangle|} \sigma(ds)=\lambda^2\ln\frac{L}{|x|}+\int_S \ln\frac{1}{|\langle e_x,s\rangle|}\sigma(ds). $$

Notice that the integral \(\int_{S}\ln\frac{1}{|\langle e_{x},s\rangle |}\sigma(ds)\) is finite (use Lemma 3 below for instance) and does not depend on x by invariance under rotations of the measure σ. By using the decomposition (19), we can thus consider a Gaussian process X ϵ with covariance kernel given by

$$K_\epsilon(x)= \gamma^2\int_S\int _{\epsilon}^{L}\bigl(t-\bigl|\langle x,s\rangle\bigr|\bigr)_+ \nu_L(dt)\sigma(ds), $$

sharing the properties

$$ \forall x\neq0,\quad\lim_{\epsilon\to0}K_\epsilon(x)=F(x) $$
(23)

and

$$ \forall\epsilon<|x|\leqslant L,\quad K_\epsilon(x)=F(x)= \lambda^2\ln\frac{L}{|x|}+C $$
(24)

for some constant C.

1.2 A.2 Auxiliary Results

We give a proof of the following standard result.

Lemma 3

If (Z i )1⩽iN are i.i.d. standard Gaussian random variables then the vector

$$V=\frac{1}{\sqrt{\sum_{i=1}^NZ_i^2}} (Z_1,\dots,Z_N) $$

is distributed as the Haar measure on the sphere ofN. In particular, the density of the first entry of a random vector uniformly distributed on the sphere is given by:

$$\frac{ \varGamma(\frac{N}{2})}{\varGamma(\frac{1}{2})\varGamma (\frac {N-1}{2})}y^{-\frac{1}{2}} (1-y )^{\frac{N-3}{2}} \mathbf{1}_{[0,1]}(y) \,dy. $$

Proof

By using the invariance under rotations of the law of the Gaussian vector (Z i )1⩽iN , the law of V is invariant under rotations and is supported by the sphere. By uniqueness of the Haar measure, V is distributed as the Haar measure. We have to compute the density of \(\zeta_{1}=\frac{Z_{1}^{2}}{ \sum_{i=1}^{N}Z_{i}^{2} }\). Notice that

$$\zeta_1 =\frac{Y}{Y+Z} $$

where Y, Z are independent random variables with their respective laws being chi-squared distributions of parameters 1 and N−1. Therefore

 □

Next we characterize all the symmetric Gaussian random matrices.

Lemma 4

Let X be a symmetric and isotropic centered Gaussian random matrix of size N×N. Then the diagonal terms (X 11,…,X NN ) have a covariance matrix of the form σ 2(1+c)I N 2 P for some σ 2⩾0 and \(c\in{]}{-}1,\frac{1}{N-1}]\), where P is the N×N matrix whose all entries are 1. The off-diagonal terms are i.i.d. with variance \(\sigma^{2}\frac{1+c}{2}\) and are independent of the diagonal terms.

Proof

If X admits a density with respect to the Lebesgue measure dM over the set of symmetric matrices (see [1, Chap. 4]), then the density of M is given by

$$e^{-f(M)} \,dM, $$

where f is a homogeneous polynomial of degree 2. By isotropy, f must be a symmetric function of the eigenvalues of M. Therefore it takes on the form

$$f(M)=\alpha\operatorname{tr}\bigl(M^2\bigr)+\beta\operatorname{tr}(M)^2 $$

for some α,β∈ℝ. In this case, the result follows easily.

If M does not admit a density with respect to the Lebesgue measure over the set of symmetric matrices, we can add an independent “small GOE”, i.e. we consider M+ϵM′ where M′ is a matrix of the GOE ensemble with a normalized variance independent of M. The matrix M+ϵM′ admits a density so that we can apply the above result. Then we pass to the limit as ϵ→0. □

1.3 A.3 Some Integral Formulae

Let α,c>0. We want to compute the integral

$$ \int_{\mathbb{R}^N} e^{-\alpha(\sum_{i=1}^{N} \lambda_{i})^2-\frac {1}{2(1+c)}\sum_{i=1}^{N} \lambda_{i}^2} \prod_{i<j} | \lambda_j-\lambda_i | d \lambda. $$

We write the integrand in the form (7):

$$ e^{-\alpha(\sum_{i=1}^{N} \lambda_{i})^2-\frac{1}{2\sigma _d^2(1+\bar{c})}\sum_{i=1}^{N} \lambda_{i}^2} \prod_{i<j} |\lambda_j- \lambda_i| $$

where \(\sigma_{d}^{2}(1+\bar{c})=(1+c)\) and \(\alpha=\frac{\bar{c}}{2 \sigma_{d}^{2}(1+\bar{c})}\frac{1}{(1+\bar{c}(1-N))}\). In that case, we have \(\bar{c}=\frac{2 \alpha(1+c)}{1+2 \alpha(1+c)(N-1)}\) and \(1+\bar{c}(1-N)= \frac{1}{1+2 \alpha(1+c)(N-1)} \). We deduce

(25)

We also want to compute the integral

$$ \int_{\mathbb{R}^N} e^{-\alpha(\sum_{i=1}^{N} \lambda_{i})^2-\frac {1}{2(1+c)}\sum_{i=1}^{N} \lambda_{i}^2} \prod_{2 \leqslant i<j} | \lambda_j-\lambda_i | d \lambda. $$

We have

for \(\sigma_{d}^{2}(1+\bar{c})=1+c\) and \(\bar{c}=\frac{2 \alpha (1+c)}{2 \alpha(1+c)(N-1)+1}\) (or equivalently, \(1+\bar{c}(2-N)=\frac {1+2\alpha(1+c)}{1+2\alpha(1+c)(N-1)}\) and \(1+\bar{c}=\frac {1+2\alpha(1+c)N}{1+2\alpha(1+c)(N-1)}\)). This leads to the following

$$ \int_{\mathbb{R}^{N-1}} e^{ -\frac{\bar{c}}{2 \sigma_d^2(1+\bar {c})}\frac {1}{(1+\bar{c}(2-N))}(\sum_{i=2}^{N} \lambda_{i})^2 -\frac {1}{2\sigma_d^2(1+\bar{c})} \sum_{i=2}^{N} \lambda_{i}^2 } \underset{2 \leqslant i<j}{\prod} |\lambda_j-\lambda_i| d \lambda_2 \cdots d \lambda_N = \bar{Z}_{N-1} $$

where

$$\bar{Z}_{N-1}=(N-1)! (2\pi)^{(N-1)/2} \Biggl(\prod _{k=1}^{N-1} \frac{\varGamma(k/2)}{\varGamma(1/2)}\Biggr) \sigma_{d}^{N(N-1)/2} (1+\bar {c})^{(N-2)(N+1)/4}\sqrt{1+ \bar{c}(2-N)}. $$

In conclusion, we get:

(26)

1.4 A.4 Heuristic Derivation of the Conjecture

Let <1. We can roughly write as →0 (where ≈ means equivalent to a random constant of order 1)

$$ M\bigl( B(0,\ell) \bigr) \approx\ell^d \frac{e^{ \gamma\sqrt{ \ln\frac {1}{\ell} } \varOmega- \frac{\gamma^2}{2} \ln\frac{1}{\ell}}}{ \gamma^{N-1} (\ln\frac{1}{\ell})^{(N-1)/2} }, $$

where Ω is a random matrix whose density is given by (6) with \(\sigma_{d}^{2}=1\), and thus we get (we forget terms of order 1)

where \(\alpha=\frac{c}{2 (1+c)}\frac{1}{(1+c(1-N))}\) Thus, if q>0

$$ E \bigl[ \operatorname{tr} M\bigl( B(0,\ell) \bigr)^q \bigr] \approx\frac{\ell^{ (d + \frac {\gamma^2}{2})q }}{ (\ln\frac{1}{\ell})^{(q-1)(N-1)/2} } $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevillard, L., Rhodes, R. & Vargas, V. Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices. J Stat Phys 150, 678–703 (2013). https://doi.org/10.1007/s10955-013-0697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0697-9

Keywords

Navigation