Skip to main content
Log in

Non-consensus Opinion Models on Complex Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual’s original opinion when determining their future opinion (NCOW model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not only within single networks but also between networks, and because the rules of opinion formation within a network may differ from those between networks, we study here the opinion dynamics in coupled networks. Each network represents a social group or community and the interdependent links joining individuals from different networks may be social ties that are unusually strong, e.g., married couples. We apply the non-consensus opinion (NCO) rule on each individual network and the global majority rule on interdependent pairs such that two interdependent agents with different opinions will, due to the influence of mass media, follow the majority opinion of the entire population. The opinion interactions within each network and the interdependent links across networks interlace periodically until a steady state is reached. We find that the interdependent links effectively force the system from a second order phase transition, which is characteristic of the NCO model on a single network, to a hybrid phase transition, i.e., a mix of second-order and abrupt jump-like transitions that ultimately becomes, as we increase the percentage of interdependent agents, a pure abrupt transition. We conclude that for the NCO model on coupled networks, interactions through interdependent links could push the non-consensus opinion model to a consensus opinion model, which mimics the reality that increased mass communication causes people to hold opinions that are increasingly similar. We also find that the effect of interdependent links is more pronounced in interdependent scale free networks than in interdependent Erdős Rényi networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shao, J., Havlin, S., Stanley, H.E.: Phys. Rev. Lett. 103, 01870 (2009)

    Article  Google Scholar 

  2. Li, Q., Braunstein, L.A., Havlin, S., Stanley, H.E.: Phys. Rev. E 84, 066101 (2011)

    Article  ADS  Google Scholar 

  3. Castellano, C., Fortunato, S., Loreto, V.: Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  5. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  6. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet: A Statistical Approach. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  7. Erdős, P., Rényi, A.: Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)

    Google Scholar 

  8. Erdős, P., Rényi, A.: Publ. Math. 6, 290 (1959)

    Google Scholar 

  9. Bollobás, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  10. Albert, R., Barabási, A.-L.: Rev. Mod. Phys. 74, 47–97 (2002)

    Article  ADS  MATH  Google Scholar 

  11. Cohen, R., et al.: Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  12. Barabási, A.-L., Albert, R.: Science 286, 509 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  13. Cohen, R., Havlin, S.: Complex Networks: Structure, Robustness and Function. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  14. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  15. Galam, S.: Europhys. Lett. 70, 705 (2005)

    Article  ADS  Google Scholar 

  16. Sznajd-Weron, K., Sznajd, J.: Int. J. Mod. Phys. C 11, 1157 (2000)

    Article  ADS  Google Scholar 

  17. Liggett, T.M.: Stochastic Interacting Systems: Contact Voter, and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  18. Lambiotte, R., Redner, S.: Europhys. Lett. 82, 18007 (2008)

    Article  ADS  Google Scholar 

  19. Galam, S.: Eur. Phys. J. B 25, 403 (2002)

    ADS  Google Scholar 

  20. Krapivsky, P.L., Redner, S.: Phys. Rev. Lett. 90, 238701 (2003)

    Article  ADS  Google Scholar 

  21. Latané, B.: Am. Psychol. 36, 343 (1981)

    Article  Google Scholar 

  22. Nowak, A., et al.: Psychol. Rev. 97, 362 (1990)

    Article  Google Scholar 

  23. Shao, J., Havlin, S., Stanley, H.E.: Phys. Rev. Lett. 109, 079802 (2012)

    Article  ADS  Google Scholar 

  24. Sattari, A., Paczuski, M., Grassberger, P.: Phys. Rev. Lett. 109, 079801 (2012)

    Article  ADS  Google Scholar 

  25. Ben-Avraham, D.: Phys. Rev. E 83, 050101 (2011)

    Article  ADS  Google Scholar 

  26. Borghesi, C., Chiche, J., Nadal, J.: PLoS ONE 7(7) e39916 (2012). doi:10.1371/journal.pone.0039916

    Article  ADS  Google Scholar 

  27. Roca, C.P., Draief, M., Helbing, D.: arXiv:1101.0775v1 (2011)

  28. Galam, S.: arXiv:0803.2453v1 (2008)

  29. Galam, S.: Physica A 333, 453–460 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  30. Centola, D., Willer, R., Macy, M.: Am. J. Sociol. 110, 1009 (2005)

    Article  Google Scholar 

  31. Mobilia, M., Petersen, A., Redner, S.: J. Stat. Mech., P08029 (2007)

  32. Xie, J., Sreenivasan, S., Korniss, G., Zhang, W., Lim, C., Szymanski, B.K.: Phys. Rev. E 84, 011130 (2011)

    Article  ADS  Google Scholar 

  33. Xie, J., Emenheiser, J., Kirby, M., Sreenivasan, S., Szymanski, B.K., Korniss, G.: PLoS ONE 7(3), e33215 (2012)

    Article  ADS  Google Scholar 

  34. Marvel, S.A., Hong, H., Papush, A., Strogatz, S.H.: Phys. Rev. Lett. 109, 118702 (2012)

    Article  ADS  Google Scholar 

  35. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Nature 464, 1025 (2010)

    Article  ADS  Google Scholar 

  36. Parshani, R., Buldyrev, S.V., Havlin, S.: Phys. Rev. Lett. 105, 048701 (2010)

    Article  ADS  Google Scholar 

  37. Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Phys. Rev. Lett. 107, 195701 (2011)

    Article  ADS  Google Scholar 

  38. Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Nat. Phys. 8, 40–48 (2012)

    Article  Google Scholar 

  39. Li, W., Bashan, A., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Phys. Rev. Lett. 108, 228702 (2012)

    Article  ADS  Google Scholar 

  40. Bashan, A., et al.: arXiv:1206.2062v1 (2012)

  41. Leicht, E.A., D’Souza, R.M.: arXiv:0907.0894v1 (2009)

  42. Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Proc. Natl. Acad. Sci. USA 109, 680 (2012)

    Article  ADS  Google Scholar 

  43. Schwämmle, V., González, M.C., Moreira, A.A., Andrade, J.S. Jr., Herrmann, H.J.: Phys. Rev. E 75, 066108 (2007)

    Article  ADS  Google Scholar 

  44. Paster-Satorras, R., Vespignani, A.: Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  ADS  Google Scholar 

  45. Givan, O., Schwartz, N., Cygelberg, A., Stone, L.: J. Theor. Biol. 288, 21–28 (2011)

    Article  MathSciNet  Google Scholar 

  46. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Nat. Phys. 6, 888–893 (2010)

    Article  Google Scholar 

  47. Cohen, R., Havlin, S., Ben-Avraham, D.: Phys. Rev. Lett. 91, 247901 (2003)

    Article  ADS  Google Scholar 

  48. Braunstein, L.A., Buldyrev, S.V., Cohen, R., Havlin, S., Stanley, H.E.: Phys. Rev. Lett. 91, 168701 (2003)

    Article  ADS  Google Scholar 

  49. Bunde, A., Havlin, S.: Fractals and Disordered Systems. Springer, Berlin (1994)

    Google Scholar 

  50. Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor & Francis, New York (2003)

    Google Scholar 

  51. Cohen, R., Ben-Avraham, D., Havlin, S.: Phys. Rev. E 66, 036113 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  52. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Phys. Rev. Lett. 86, 3682 (2001)

    Article  ADS  Google Scholar 

  53. Valdez, L.D., Macri, P.A., Braunstein, L.A.: Phys. Rev. E 85, 036108 (2012)

    Article  ADS  Google Scholar 

  54. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Phys. Rev. E 82, 011103 (2010)

    Article  ADS  Google Scholar 

  55. Parshani, R., Buldyrev, S.V., Havlin, S.: Proc. Natl. Acad. Sci. USA 108, 1007–1010 (2011)

    Article  ADS  Google Scholar 

  56. Pastor-Satorras, R., Vespignani, A.: Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  57. López, E., et al.: Phys. Rev. Lett. 94, 248701 (2005)

    Article  ADS  Google Scholar 

  58. Wu, Z., et al.: Phys. Rev. E 71, 045101(R) (2005)

    ADS  Google Scholar 

  59. Motter, A.E.: Phys. Rev. Lett. 93, 098701 (2004)

    Article  ADS  Google Scholar 

  60. Korniss, G.: Phys. Rev. E 75, 051121 (2007)

    Article  ADS  Google Scholar 

  61. Boguñá, M., Krioukov, D.: Phys. Rev. Lett. 102, 058701 (2009)

    Article  ADS  Google Scholar 

  62. Fortunato, S., Castellano, C.: Phys. Today 65(10), 74 (2012). doi:10.1063/PT.3.1761

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge support from the DTRA, ONR, NSF CDI program, the European EPIWORK, LINC and MULTIPLEX projects, the Israel Science Foundation, the PICT 0293/00 and UNMdP, NGI and CONGAS.

After completion of this work, appeared a very readable introduction to this field: S. Fortunato and C. Castellano, Phys. Today 65(10), 74 (2012) [62].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Braunstein, L.A., Wang, H. et al. Non-consensus Opinion Models on Complex Networks. J Stat Phys 151, 92–112 (2013). https://doi.org/10.1007/s10955-012-0625-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0625-4

Keywords

Navigation