Skip to main content
Log in

Field Induced Stationary State for an Accelerated Tracer in a Bath

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Our interest goes to the behavior of a tracer particle, accelerated by a constant and uniform external field, when the energy injected by the field is redistributed through collision to a bath of unaccelerated particles. A non equilibrium steady state is thereby reached. Solutions of a generalized Boltzmann-Lorentz equation are analyzed analytically, in a versatile framework that embeds the majority of tracer-bath interactions discussed in the literature. These results—mostly derived for a one dimensional system—are successfully confronted to those of three independent numerical simulation methods: a direct iterative solution, Gillespie algorithm, and the Direct Simulation Monte Carlo technique. We work out the diffusion properties as well as the velocity tails: large v, and either large −v, or v in the vicinity of its lower cutoff whenever the velocity distribution is bounded from below. Particular emphasis is put on the cold bath limit, with scatterers at rest, which plays a special role in our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lorentz, H.: In: KNAW, Proceedings, vol. 7, pp. 1904–1905 (1905)

    Google Scholar 

  2. Piasecki, J., Wajnryb, E.: J. Stat. Phys. 21(5), 549 (1979)

    Article  ADS  Google Scholar 

  3. Olaussen, K., Hemmer, P.: J. Phys. A, Math. Gen. 15, 3255 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  4. Piasecki, J.: Am. J. Phys. 61, 718 (1993)

    Article  ADS  Google Scholar 

  5. Martin, P., Piasecki, J.: J. Phys. A, Math. Gen. 40, 361 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Piasecki, J.: J. Stat. Phys. 30(1), 185 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  7. Résibois, P., Mareschal, M.: Physica A 94(2), 211 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  8. Piasecki, J.: Phys. Lett. A 114(5), 245 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  9. Gervois, A., Piasecki, J.: J. Stat. Phys. 42(5), 1091 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  10. Eder, O., Posch, M.: J. Stat. Phys. 52(3), 1031 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Martin, P., Piasecki, J.: Europhys. Lett. 46, 613 (1999)

    Article  ADS  Google Scholar 

  12. Piasecki, J., Soto, R.: Physica A 369(2), 379 (2006)

    Article  ADS  Google Scholar 

  13. Alastuey, A., Piasecki, J.: J. Stat. Phys. 139(6), 991 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Gradenigo, G., Puglisi, A., Sarracino, A., Marconi, U.M.B.: Phys. Rev. E 85, 031112 (2012). doi:10.1103/PhysRevE.85.031112

    Article  ADS  Google Scholar 

  15. Puglisi, A., Sarracino, A., Gradenigo, G., Villamaina, D.: Granul. Matter (2012). doi:10.1007/s10035-012-0312-9

  16. Fiege, A., Grob, M., Zippelius, A.: Granul. Matter (2012). doi:10.1007/s10035-011-0309-9

  17. Candelier, R., Dauchot, O.: Phys. Rev. E 81, 011304 (2010). doi:10.1103/PhysRevE.81.011304

    Article  ADS  Google Scholar 

  18. Maxwell, J.: Philos. Trans. R. Soc. Lond. 157, 49 (1867)

    Article  Google Scholar 

  19. Brilliantov, N., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford Graduate Texts (2004)

    Book  MATH  Google Scholar 

  20. Ernst, M., Trizac, E., Barrat, A.: J. Stat. Phys. 124, 549 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Santos, A., Dufty, J.: Phys. Rev. Lett. 97(5), 58001 (2006)

    Article  ADS  Google Scholar 

  22. Montanero, J.M., Santos, A.: Granul. Matter 2, 53 (2000)

    Article  Google Scholar 

  23. Piasecki, J., Talbot, J., Viot, P.: Physica A 373, 313 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Hahn, K., Kärger, J., Kukla, V.: Phys. Rev. Lett. 76, 2762 (1996). doi:10.1103/PhysRevLett.76.2762

    Article  ADS  Google Scholar 

  25. Ernst, M.: Phys. Rep. 78, 1 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  26. Krapivsky, P.L., Sire, C.: Phys. Rev. Lett. 86, 2494 (2001)

    Article  ADS  Google Scholar 

  27. Piasecki, J.: J. Stat. Phys. 24(1), 45 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  28. Visco, P., van Wijland, F., Trizac, E.: Phys. Rev. E 77(4), 041117 (2008)

    Article  ADS  Google Scholar 

  29. Talbot, J., Viot, P.: J. Phys. A, Math. Gen. 39, 10947 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Bird, G.: Comput. Math. Appl. 35(1–2), 1 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ernst, M., Brito, R.: Phys. Rev. E 65(4), 040301 (2002)

    Article  ADS  Google Scholar 

  32. Dean, D., Majumdar, S.: J. Stat. Phys. 124(6), 1351 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Ben-Avraham, D., Ben-Naim, E., Lindenberg, K., Rosas, A.: Phys. Rev. E 68(5), 050103 (2003)

    Article  ADS  Google Scholar 

  34. Wannier, G.: Phys. Rev. 83(2), 281 (1951)

    Article  ADS  MATH  Google Scholar 

  35. Gasper, G., Rahman, M.: Basic Hypergeometric Series, vol. 35. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  36. Bateman, H., Erdélyi, A., Project, B.M.: Higher Transcendental Functions. Krieger, Melbourne (1981)

    Google Scholar 

  37. Gordon, B., Mcintosh, R.: J. Lond. Math. Soc. 62(2), 321 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Leipnik, R.: J. Aust. Math. Soc. Ser. B, Appl. Math 32(03), 327 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. López-García, M.: Theory Probab. Appl. 55, 303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stieltjes, T., Dijk, G.: Collected Papers/Oeuvres Completes. Springer, Berlin (1993)

    Book  Google Scholar 

  41. Bruijn, N.D.: Indag. Math. 15, 449 (1953)

    Google Scholar 

  42. Résibois, P., De Leener, M.: Classical Kinetic Theory of Fluids. Wiley, New York (1977)

    Google Scholar 

Download references

Acknowledgements

We would like to thank A. Alastuey, A. Burdeau, S. Majumdar, J. Talbot, and P. Viot for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Barbier.

Appendix: Computation of the Diffusion Coefficient

Appendix: Computation of the Diffusion Coefficient

Let us define the velocity autocorrelation function Γ(t) as

$$ \varGamma(t) = \bigl\langle \bigl(v(t)- \langle v \rangle\bigr) \bigl(v(0)- \langle v \rangle\bigr) \bigr\rangle $$
(86)

where 〈 . 〉 denotes the mean over the stationary distribution f ν (v) and v(t) is the velocity of a given realization of the tracer at time t. A standard relation [6, 42] connects Γ(t) to the diffusion coefficient

(87)

where use was made of the fact that both v(0) and v(∞) are sampled according to f ν (v), and it was assumed that the above limits exist. In a derivation similar to the one used in [42], this function Γ(t) is expressed as

$$ \varGamma(t) =\int dv_0 \, f_{\nu}(v_0) \int d v\, F_{\nu}(v,t|v_0) \bigl(v- \langle v \rangle\bigr) \bigl(v_0- \langle v \rangle \bigr) $$
(88)

where F ν (v,t|v 0) is the conditional velocity distribution of the tracer at time t knowing it had velocity v 0 at time 0, i.e. it is the time-dependent distribution F ν (v,t) with the initial condition F ν (v,0)=δ(vv 0). We may thus define the auxiliary function

$$ N(v,t) = \int dv_0 \,f_{\nu}(v_0) F_{\nu}(v,t|v_0) \bigl(v_0- \langle v \rangle\bigr) $$
(89)

which fulfills the initial condition

$$ N(v,0) = \bigl(v- \langle v \rangle\bigr) f_{\nu }(v) $$
(90)

and

$$ \varGamma(t) = \int d v \,\bigl(v- \langle v \rangle\bigr) N(v,t) $$
(91)

Due to the linearity of the Boltzmann-Lorentz equation, N(v,t) follows the same equation as F ν (v,t) as can be seen from Eq. (89). Therefore, the determination of Γ(t) using (91) amounts to computing the integral and first moment of the solution of the Boltzmann-Lorentz equation with the non-physical initial condition (90). As this equation conserves the normalization,

$$ \int dv \,N(v,t) = \int dv \,N(v,0) = 0 $$
(92)

thus

$$ \varGamma(t) = \int dv \,vN(v,t) $$
(93)

Finally, if ν=0, this time-dependent first moment can be computed directly from the Boltzmann equation

$$ \frac{\partial\varGamma}{\partial t} = - g \int dv \,v \frac {\partial N}{\partial v}+ \int dv_1\, dv_2 \, N(v_1)\varPhi(v_2) \int dv \,v \bigl[\delta\bigl(v_1'-v\bigr) - \delta(v_1-v) \bigr] $$
(94)

The first term on the right-hand side vanishes, while \(v_{1}' - v_{1} = (a-1) \,(v_{1} - v_{2})\) and therefore

$$ \frac{\partial\varGamma}{\partial t} = -(1-a)\varGamma(t) $$
(95)
$$ \varGamma(t) = \varGamma(0)\,e^{-(1-a)t} $$
(96)

from which the diffusion coefficient follows

$$ D=\frac{\varGamma(0)}{1-a}= \frac{ \langle v^2 \rangle- \langle v \rangle^2}{1-a} $$
(97)

We have thus related D to the variance of the tracer stationary velocity distribution in the case of Maxwell particles with an arbitrary bath.

Furthermore, the approach can be generalized to higher dimensions, where the collision law reads

$$ \mathbf{v}'_1 = \mathbf{ v}_1 + (1-a) \bigl[ (\mathbf{v}_2- \mathbf{v}_1).\hat{\sigma}\bigr] \hat{\sigma}$$
(98)

so that Eq. (94) becomes

(99)

Then, if we define e 12 the unit vector along (v 2v 1), θ the angle between \(\hat{\sigma}\) and e 12, and \(\hat{\varOmega}\) the solid angle

$$ \int d \hat{\sigma}\,\bigl[ (\mathbf {v}_2-\mathbf {v}_1).\hat{\sigma}\bigr] \hat{\sigma}= \int d\hat{\varOmega}\,|\mathbf {v}_2-\mathbf {v}_1| \cos^2(\theta) \mathrm{e}_{12} =C(d)( \mathbf {v}_2- \mathbf {v}_1) $$
(100)
$$ C(d) = \int d\hat{\varOmega}\,\bigl[1-\sin^2(\theta)\bigr] = A_d \biggl[1 - \frac {\int_0^\pi d\theta\, \sin^{d}\theta}{\int_0^\pi d\theta\, \sin^{d-2}\theta} \biggr] = \frac{A_d}{d} $$
(101)

where A d is the area of the d-dimensional unit hypersphere. We may then compute the first and second moments: letting g=g e x

$$ \langle \mathbf {v}\rangle= \langle v_x \rangle \mathbf{e}_{x} = \frac{\mathbf{g}d}{A_d(1-a)} $$
(102)
$$ \bigl\langle \mathbf {v}^2 \bigr\rangle= \frac{1-a}{1+a} \bigl\langle v^2 \bigr\rangle_b + \frac{2gd}{1-a^2} \frac{ \langle v_x \rangle}{A_d} $$
(103)

hence

$$ \varGamma(0) = \bigl\langle \mathbf {v}^2 \bigr\rangle- \langle \mathbf {v}\rangle^2 = \frac{1-a}{1+a} \bigl\langle v^2 \bigr \rangle_b + \frac{g^2d^2}{A_d^2(1-a^2)} $$
(104)

which gives the following relation for the diffusion coefficient in d dimensions in a bath with unit temperature:

$$ D_d = \frac{d}{A_d(1+a)} \biggl(1 + \frac{g^2 d^2}{A_d^2(1-a)^2} \biggr) $$
(105)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbier, M., Trizac, E. Field Induced Stationary State for an Accelerated Tracer in a Bath. J Stat Phys 149, 317–341 (2012). https://doi.org/10.1007/s10955-012-0591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0591-x

Keywords

Navigation