Skip to main content
Log in

Region Graph Partition Function Expansion and Approximate Free Energy Landscapes: Theory and Some Numerical Results

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Graphical models for finite-dimensional spin glasses and real-world combinatorial optimization and satisfaction problems usually have an abundant number of short loops. The cluster variation method and its extension, the region graph method, are theoretical approaches for treating the complicated short-loop-induced local correlations. For graphical models represented by non-redundant or redundant region graphs, approximate free energy landscapes are constructed in this paper through the mathematical framework of region graph partition function expansion. Several free energy functionals are obtained, each of which use a set of probability distribution functions or functionals as order parameters. These probability distribution function/functionals are required to satisfy the region graph belief-propagation equation or the region graph survey-propagation equation to ensure vanishing correction contributions of region subgraphs with dangling edges. As a simple application of the general theory, we perform region graph belief-propagation simulations on the square-lattice ferromagnetic Ising model and the Edwards-Anderson model. Considerable improvements over the conventional Bethe-Peierls approximation are achieved. Collective domains of different sizes in the disordered and frustrated square lattice are identified by the message-passing procedure. Such collective domains and the frustrations among them are responsible for the low-temperature glass-like dynamical behaviors of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We follow the convention in the literature and use letters i,j,k,l,… to denote variable nodes and letters a,b,c,d,… to denote function nodes.

  2. In this paper, we use Greek symbols α,β,γ,… to denote the regions of a region graph R.

  3. Although (57) sums over all the stationary points of F 0, we expect that at sufficiently large values of y the grand partition function will be dominantly contributed by the free energy minimal points.

  4. At such low temperatures, the rgBP equation starts to be difficult to converge, probably because of the frustration effects due to domain competitions.

References

  1. An, G.: A note on the cluster variation method. J. Stat. Phys. 52, 727–734 (1988)

    Article  ADS  MATH  Google Scholar 

  2. Anderson, P.W.: Spin glass vii: Spin glass as paradigm. Phys. Today March, 9–11 (1990)

    Google Scholar 

  3. Aurell, E., Ollion, C., Roudi, Y.: Dynamics and performance of susceptibility propagation on synthetic data. Eur. Phys. J. B 77, 587–595 (2010)

    Article  ADS  Google Scholar 

  4. Bethe, H.A.: Statistical theory of superlattices. Proc. R. Soc. Lond. Ser. A 150, 552–575 (1935)

    Article  ADS  MATH  Google Scholar 

  5. Braunstein, A., Zecchina, R.: Learning by message passing in networks of discrete synapses. Phys. Rev. Lett. 96, 030201 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Chertkov, M., Chernyak, V.Y.: Loop series for discrete statistical models on graphs. J. Stat. Mech. Theory Exp. P06009 (2006)

  7. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  8. Domínguez, E., Lage-Catellanos, A., Mulet, R., Ricci-Tersenghi, F., Rizzo, T.: Characterizing and improving generalized belief propagation algorithms on the 2d Edwards-Anderson model. J. Stat. Mech. Theory Exp. P12007 (2011)

  9. Donoho, D.L., Maleki, A., Montanari, A.: Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. USA 106, 18914–18919 (2009)

    Article  ADS  Google Scholar 

  10. Ediger, M.D.: Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000)

    Article  ADS  Google Scholar 

  11. Edwards, S.F., Anderson, P.W.: Theory of spin glasses. J. Phys. F, Met. Phys. 5, 965–974 (1975)

    Article  ADS  Google Scholar 

  12. Glotzer, S.C.: Spatially heterogeneous dynamics in liquids: insights from simulation. J. Non-Cryst. Solids 274, 342–355 (2000)

    Article  ADS  Google Scholar 

  13. Hartmann, A.K., Weigt, W.: Phase Transitions in Combinatorial Optimization Problems. Wiley-VCH, Weinheim (2005)

    Book  MATH  Google Scholar 

  14. Kabashima, Y., Saad, D.: Statistical mechanics of error-correcting codes. Europhys. Lett. 45, 97–103 (1999)

    Article  ADS  Google Scholar 

  15. Kikuchi, R.: A theory of cooperative phenomena. Phys. Rev. 81, 988–1003 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60, 252–262 (1941)

    Article  MathSciNet  ADS  Google Scholar 

  17. Krzakala, F., Mézard, M., Sausset, F., Sun, Y.F., Zdeborová, L.: Statistical physics-based reconstruction in compressed sensing. arXiv:1109.4424 (2011)

  18. Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., Zdeborova, L.: Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. Natl. Acad. Sci. USA 104, 10318–10323 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lage-Castellanos, A., Mulet, R., Ricci-Tersenghi, F., Rizzo, T.: Inference algorithm for finite-dimensional spin glasses: Belief propagation on the dual lattice. Phys. Rev. E 84, 046706 (2011)

    Article  ADS  Google Scholar 

  21. Lage-Castellanos, A., Mulet, R., Ricci-Tersenghi, F., Rizzo, T.: Replica cluster variational method: the replica symmetric solution for the 2d random bond Ising model. arXiv:1204.0439 (2012)

  22. Mézard, M., Montanari, A.: Reconstruction on trees and spin glass transition. J. Stat. Phys. 124, 1317–1350 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, New York (2009)

    Book  MATH  Google Scholar 

  24. Mézard, M., Mora, T.: Constraint satisfaction problems and neural networks: a statistical physics perspective. J. Physiol. Paris 103, 107–113 (2009)

    Article  Google Scholar 

  25. Mézard, M., Parisi, G.: The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217–233 (2001)

    Article  ADS  Google Scholar 

  26. Mézard, M., Parisi, G., Virasoro, M.A.: SK model: the replica solution without replicas. Europhys. Lett. 1, 77–82 (1986)

    Article  ADS  Google Scholar 

  27. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  28. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297, 812–815 (2002)

    Article  ADS  Google Scholar 

  29. Monasson, R.: Structural glass transition and the entropy of the metastable states. Phys. Rev. Lett. 75, 2847–2850 (1995)

    Article  ADS  Google Scholar 

  30. Monasson, R.: Optimization problems and replica symmetry breaking in finite connectivity spin glasses. J. Phys. A, Math. Gen. 31, 513–529 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Montanari, A., Rizzo, T.: How to compute loop corrections to Bethe approximation. J. Stat. Mech. Theory Exp. P10011 (2005)

  32. Montanari, A., Semerjian, G.: On the dynamics of the glass transition on Bethe lattices. J. Stat. Phys. 124, 103–189 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Morgenstern, I., Binder, K.: Magnetic correlations in two-dimensional spin-glasses. Phys. Rev. B 22, 288–303 (1980)

    Article  ADS  Google Scholar 

  34. Morita, T., Suzuki, M., Wada, K., Kaburagi, M. (eds.): Foundations and applications of cluster variation method and path probability method. Prog. Theor. Phys., Suppl. 115, 1–378 (1994)

    Article  Google Scholar 

  35. Onsager, L.: Crystal statistics I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979)

    Article  ADS  Google Scholar 

  37. Parisi, G., Slanina, F.: Loop expansion around the Bethe-Peierls approximation for lattice models. J. Stat. Mech. Theory Exp. L02003 (2006)

  38. Peierls, R.: On Ising’s model of ferromagnetism. Proc. Camb. Philol. Soc. 32, 477–481 (1936)

    Article  ADS  MATH  Google Scholar 

  39. Pelizzola, A.: Cluster variation method in statistical physics and probabilistic graphical models. J. Phys. A, Math. Gen. 38, R309–R339 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  40. Rizzo, T., Lage-Castellanos, A., Mulet, R., Ricci-Tersenghi, F.: Replica cluster variational method. J. Stat. Phys. 139, 375–416 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Rizzo, T., Wemmenhove, B., Kappen, H.J.: Cavity approximation for graphical models. Phys. Rev. E 76, 011102 (2007)

    Article  ADS  Google Scholar 

  42. Rota, G.C.: On the foundations of combinatorial theory I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheor. 2, 340–368 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  43. Roudi, Y., Hertz, J.: Mean field theory for nonequilibrium network reconstruction. Phys. Rev. Lett. 106, 048702 (2011)

    Article  ADS  Google Scholar 

  44. Saul, L., Kardar, M.: Exact integer algorithm for the two-dimensional ±j Ising spin glass. Phys. Rev. E 48, R3221–R3224 (1993)

    Article  ADS  Google Scholar 

  45. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975)

    Article  ADS  Google Scholar 

  46. Suzuki, M., Hu, X., Hatano, N., Katori, M., Minami, K., Lipowski, A., Nonomura, Y.: Coherent Anomaly Method: Mean Field, Fluctuations and Systematics. World Scientific, Singapore (1995)

    Google Scholar 

  47. Tanaka, T.: Statistical mechanics of CDMA multiuser demodulation. Europhys. Lett. 54, 540–546 (2001)

    Article  ADS  Google Scholar 

  48. Thomas, C.K., Huse, D.A., Middleton, A.A.: Zero- and low-temperature behavior of the two-dimensional ±j Ising spin glass. Phys. Rev. Lett. 107, 047203 (2011)

    Article  ADS  Google Scholar 

  49. Toulouse, G.: Theory of the frustration effect in spin glasses: I. Commun. Phys. 2, 115–119 (1977)

    Google Scholar 

  50. Viana, L., Bray, A.J.: Phase diagrams for dilute spin glasses. J. Phys. C, Solid State Phys. 18, 3037–3051 (1985)

    Article  ADS  Google Scholar 

  51. Weigt, M., White, R.A., Szurmant, H., Hoch, J.A., Hwa, T.: Identification of direct residue contacts in protein-protein interaction by message-passing. Proc. Natl. Acad. Sci. USA 106, 67–72 (2009)

    Article  ADS  Google Scholar 

  52. Xiao, J.Q., Zhou, H.: Partition function loop series for a general graphical model: free-energy corrections and message-passing equations. J. Phys. A, Math. Theor. 44, 425001 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  53. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations and generalized belief-propagation algorithms. IEEE Trans. Inf. Theory 51, 2282–2312 (2005)

    Article  MathSciNet  Google Scholar 

  54. Zdeborová, L.: Statistical physics of hard optimization problems. Acta Phys. Slovaca 59, 169–303 (2009)

    Article  ADS  Google Scholar 

  55. Zhou, H.: Boltzmann distribution of free energies in a finite-connectivity spin-glass system and the cavity approach. Front. Phys. China 2, 238–250 (2007)

    Article  ADS  Google Scholar 

  56. Zhou, H., Wang, C., Xiao, J.Q., Bi, Z.: Partition function expansion on region-graphs and message-passing equations. J. Stat. Mech. Theory Exp. L12001 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Zhou.

Additional information

Research partially supported by Chinese Academy of Sciences (grant number KJCX2-EW-J02) and by the National Science Foundation of China (grant numbers 10834014 and 11121403).

Appendices

Appendix A: Derivation of Parent-to-Child Message-Passing Equation

Here we give a detailed derivation of Eqs. (52) and (53). These equations are valid for a non-redundant region graph R. We assume R to be non-redundant in this whole section.

First, the region subgraph formed by region γ and all its descendants is a connected tree (see the blue-shaded area of Fig. 5). This property ensures the equivalence of (51) with (49). Notice that a region μB γ may point to two or more regions of the set I γ .

Applying the definition (24) and then the two identities (21) and (22), we obtain that

(76)

The set R b I γ contains regions of subgraph R b except those also belonging to set I γ , and similarly for R j I γ .

Because R b and R j are two connected tree subgraphs, we have

$$ \everymath{\displaystyle} \begin{array}{l} \sum _{\eta \in R_b \backslash I_\gamma} c_\eta = \sum _{\nu\in R_b \cap I_\gamma} \sum _{\{(\mu\rightarrow \nu)| \mu\in B_\gamma\}} \sum _{\alpha \in R_b^{\mu\rightarrow \nu}} c_\alpha ,\\[12pt] \sum _{\eta \in R_j \backslash I_\gamma} c_\eta = \sum _{\nu\in R_j \cap I_\gamma} \sum _{\{(\mu\rightarrow \nu) | \mu \in B_\gamma\}} \sum _{\alpha \in R_j^{\mu\rightarrow \nu}} c_\alpha . \end{array} $$
(77)

In the above equation, \(R_{b}^{\mu\rightarrow \nu}\) denotes the branch of the tree R b that is still connected with μ if the directed edge μν is removed; and \(R_{j}^{\mu\rightarrow \nu}\) has the same definition, i.e., it is the branch of the tree R j that contains region μ but not ν. The possibility that a region μB γ might point to two ore more regions in I γ does not affect the validity of (77). The reason is simple: if ν 1 and ν 2 are two children of μ in I γ , then ν 1 and ν 2 do not share any function node nor any variable node in common.

Based on (77), (76) and (51), we obtain the important expression (52). In that equation, the parent-to-message \(m_{\mu\rightarrow \nu}(\underline{x}_{\nu})\) is defined as

$$ m_{\mu\rightarrow \nu}(\underline{x}_\nu) \propto p_{\mu\rightarrow \nu}(\underline{x}_\nu) \prod _{b\in \nu} \bigl[ \psi_b(\underline{x}_{\partial b}) \bigr]^{-\sum_{\alpha\in R_b^{\mu\rightarrow \nu}} c_\alpha} \prod _{j\in \nu} \bigl[ \psi_j(x_j) \bigr]^{-\sum_{\alpha\in R_j^{\mu\rightarrow \nu}} c_\alpha} $$
(78)

up to a normalization constant (to be fixed by \(\sum_{\underline{x}_{\nu}} m_{\mu\rightarrow \nu}(\underline{x}_{\nu})=1\)).

Using the expression (39) for the probability distribution \(p_{\mu\rightarrow \nu}(\underline{x}_{\nu})\), it is easy to show that

(79)

Notice that

(80)

Then we have

(81)

It is easy to check that, for a function node cνI μ ,

$$ \sum _{\alpha \in R_c^{\mu\rightarrow \nu}} c_\alpha - \sum _{\eta \in R_c \cap (I_\mu\backslash I_\nu)} c_\alpha = \sum _{\alpha \in R_c^{\mu\rightarrow \nu} \backslash I_\mu} c_\alpha , $$
(82)

where \(R_{c}^{\mu\rightarrow \nu} \backslash I_{\mu}\) denotes the set formed by all the regions in the region subtree \(R_{c}^{\mu\rightarrow \nu}\) except those which are also members of the region set I μ . Similarly, for a variable node kνI μ , we have

$$ \sum _{\alpha \in R_k^{\mu\rightarrow \nu}} c_\alpha - \sum _{\eta \in R_k \cap (I_\mu\backslash I_\nu)} c_\alpha = \sum _{\alpha \in R_k^{\mu\rightarrow \nu} \backslash I_\mu} c_\alpha , $$
(83)

with \(R_{k}^{\mu\rightarrow \nu} \backslash I_{\mu}\) being the set formed by all the regions in the region subtree \(R_{k}^{\mu\rightarrow \nu}\) except those which are also members of the region set I μ . With these two equalities, (81) is re-written as

(84)

Combining the above equation with (78) leads to

(85)

Using the properties (77) for the region trees R b (induced by each function node bμ) and R k (induced by each variable node kμ), it is not difficult to verify that the expression in the curly brackets of the above equation is equal to 1. Therefore we arrive at the message-passing equation (53) for \(m_{\mu\rightarrow \nu}(\underline{x}_{\nu})\).

Appendix B: Derivation of the Free Energy Expression (56)

We demonstrate that, for a non-redundant region graph R, the region graph free energy F 0 can be expressed as \(F_{0} = \sum_{\alpha \in R} c_{\alpha}\tilde{F}_{\alpha}\), with \(\tilde{F}_{\alpha}\) given by (56).

First, we notice that f (μ,ν) as defined by (42) can be expressed as

$$ f_{(\mu, \nu)} = f_\nu + \frac{1}{\beta} \ln \biggl[ \sum _{\underline{x}_\nu} \varPsi_\nu( \underline{x}_\nu) \prod _{\gamma \in \partial \nu \backslash \mu} p_{\gamma \rightarrow \nu}\bigl(\underline{x}_{\nu\cap \gamma}^{\nu}\bigr) \biggr] = f_\nu - f_{\nu\rightarrow \mu} , $$
(86)

where f νμ is defined through (67). In writing down this equation, we have assumed that μ is a parent of ν. From Eq. (45) we then obtain that

$$ \tilde{F}_\alpha = f_\alpha + \sum _{\{(\mu\rightarrow \nu) | \mu \in I_\alpha\}} f_{\nu\rightarrow \mu} . $$
(87)

On the other hand, based on the definition (42) for f α we derive that

$$ f_\alpha = -\frac{1}{\beta} \ln \biggl[ \sum _{\underline{x}_\alpha} \prod _{\eta\in I_\alpha} \varPsi_\eta(\underline{x}_\eta) \prod _{\{(\mu\rightarrow \nu) | \mu \in B_\alpha, \nu \in I_\alpha\}} p_{\mu\rightarrow \nu}(\underline{x}_\nu) \biggr] - \sum _{\{(\mu \rightarrow \nu) | \mu \in I_\alpha\}} f_{\nu\rightarrow \mu} . $$
(88)

From the last two expressions we then get the following simple formula for \(\tilde{F}_{\alpha}\):

$$ \tilde{F}_\alpha = -\frac{1}{\beta} \ln \biggl[ \sum _{\underline{x}_\alpha} \prod _{\eta\in I_\alpha} \varPsi_\eta(\underline{x}_\eta) \prod _{\{(\mu\rightarrow \nu) | \mu \in B_\alpha, \nu \in I_\alpha\}} p_{\mu\rightarrow \nu}(\underline{x}_\nu) \biggr]. $$
(89)

This formula is very similar to (56), but not yet identical.

Now we replace \(p_{\mu\rightarrow \nu}(\underline{x}_{\nu})\) of (89) by \(m_{\mu\rightarrow \nu}(\underline{x}_{\nu})\) through the relation (78), and obtain that

(90)

We need to prove that

(91)

To prove this, it is first noticed that the left side of (91) is equivalent to

(92)

For a non-redundant region graph R, the sum in the curly brackets of the above expression is identical to zero, i.e., for each directed edge μν:

$$ \sum _{\{ \alpha | \mu \in B_\alpha, \nu \in I_\alpha\}} c_\alpha = \sum _{\alpha \geq \nu} c_\alpha -\sum _{\eta \geq \mu} c_\eta = 1- 1 = 0 . $$
(93)

Combining Eqs. (44), (89) and (91), we obtain the objective equation:

$$ F_0 = \sum _{\alpha \in R} c_\alpha \biggl\{ -\frac{1}{\beta} \ln \biggl[ \sum _{\underline{x}_\alpha} \prod _{a \in \alpha} \psi_a (\underline{x}_{\partial a}) \prod _{i\in \alpha} \psi_i(x_i) \prod _{\{(\mu\rightarrow \nu) | \mu \in B_\alpha, \nu \in I_\alpha\}} m_{\mu\rightarrow \nu}(\underline{x}_\nu) \biggr] \biggr\} . $$
(94)

Appendix C: Self-consistent Equations at n=2

For the local structure shown in Fig. 6, the square-to-rod messages between the regions α and a are:

(95a)
(95b)
(95c)

where we have introduced several shorthand notations

Similarly, the stripe-to-rod messages between the regions μ and a are:

(96a)
(96b)
(96c)

On the same edges (α,a) and (μ,a), the rod-to-square and rod-to-stripe messages are much simpler and are expressed as

(97a)
(97b)

Appendix D: Stability Analysis of the Paramagnetic Solution at n=2

At the paramagnetic fixed point (72), the effective couplings such as \(J_{\alpha\rightarrow a}^{(i j)}\) and \(J_{\mu\rightarrow a}^{(i j)}\) are determined self-consistently through (95c) and (96c). Then the rgBP iteration equations for the fields are linearized. The coefficients of the linearized equations are obtained by the following expressions:

(98a)
(98b)
(98c)
(98d)
(98e)
(98f)
(98g)
(98h)

The linearized rgBP equations for the fields are iterated on a given region graph. During each sweep of the iteration, the output field messages of each square region of the region graph are updated once, and the maximum among the absolute values of all the updated fields is recorded. If this maximum decays to zero with the iteration sweeps, the paramagnetic fixed point is then declared as stable. When the paramagnetic solution is unstable, this maximum value will eventually increase with iteration sweeps (after a transient decreasing stage).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Wang, C. Region Graph Partition Function Expansion and Approximate Free Energy Landscapes: Theory and Some Numerical Results. J Stat Phys 148, 513–547 (2012). https://doi.org/10.1007/s10955-012-0555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0555-1

Keywords

Navigation