Skip to main content
Log in

Reciprocal Time Relation of Noncolliding Brownian Motion with Drift

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider an N-particle system of noncolliding Brownian motion starting from x 1x 2≤…≤x N with drift coefficients ν j , 1≤jN satisfying ν 1ν 2≤…≤ν N . When all of the initial points are degenerated to be zero, x j =0, 1≤jN, the equivalence is proved between a dilatation with factor 1/t of this drifted process and the noncolliding Brownian motion starting from ν 1ν 2≤…≤ν N without drift observed at reciprocal time 1/t, for arbitrary t>0. Using this reciprocal time relation, we study the determinantal property of the noncolliding Brownian motion with drift having finite and infinite numbers of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baudoin, F., O’Connell, N.: Exponential functionals of Brownian motion and class-one Whittaker functions. Ann. Inst. Henri Poincaré B, Probab. Stat. 47, 1096–1120 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. Biane, P.: Permutation model for semi-circular systems and quantum random walks. Pac. J. Math. 171, 373–387 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Biane, P., Bougerol, P., O’Connell, N.: Littelmann paths and Brownian paths. Duke Math. J. 130, 127–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biane, P., Bougerol, P., O’Connell, N.: Continuous crystal and Duistermaat-Heckman measure for Coxeter groups. Adv. Math. 221, 1522–1583 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin, A., Corwin, I.: Macdonald processes. arXiv:1111.4408 [math.PR]

  6. Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. arXiv:1110.3489 [math.PR]

  7. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  9. Fulton, W., Harris, J.: Representation Theory, A First Course. Springer, New York (1991)

    MATH  Google Scholar 

  10. Grabiner, D.J.: Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré B, Probab. Stat. 35, 177–204 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Johansson, K.: Determinantal processes with number variance saturation. Commun. Math. Phys. 252, 111–148 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Jones, L., O’Connell, N.: Weyl chambers, symmetric spaces and number variance saturation. ALEA 2, 91–118 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  14. Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141–1164 (1959)

    MathSciNet  MATH  Google Scholar 

  15. Katori, M.: O’Connell’s process as a vicious Brownian motion. Phys. Rev. E 84, 061144 (2011)

    Article  ADS  Google Scholar 

  16. Katori, M.: Survival probability of mutually killing Brownian motion and the O’Connell process. J. Stat. Phys. 147, 206–223 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Katori, M.: System of complex Brownian motions associated with the O’Connell process. arXiv:1206.2185 [math.PR]

  18. Katori, M., Tanemura, H.: Scaling limit of vicious walks and two-matrix model. Phys. Rev. E 66, 011105 (2002)

    Article  ADS  Google Scholar 

  19. Katori, M., Tanemura, H.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45, 3058–3085 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Katori, M., Tanemura, H.: Noncolliding Brownian motion and determinantal processes. J. Stat. Phys. 129, 1233–1277 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Katori, M., Tanemura, H.: Zeros of Airy function and relaxation process. J. Stat. Phys. 136, 1177–1204 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. 293, 469–497 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Katori, M., Tanemura, H.: Noncolliding squared Bessel processes. J. Stat. Phys. 142, 592–615 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Katori, M., Tanemura, H.: Noncolliding processes, matrix-valued processes and determinantal processes. Sūgaku Expo. 24, 263–289 (2011). arXiv:1005.0533 [math.PR]

    MathSciNet  Google Scholar 

  25. Katori, M., Tanemura, H.: Complex Brownian motion representation of the Dyson model. arXiv:1008.2821 [math.PR]

  26. Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. Am. Math. Soc., Providence (1996).

    MATH  Google Scholar 

  27. Matsumoto, H., Yor, M.: An analogue of Pitman’s 2MX theorem for exponential Wiener functionals, Part I: A time-inversion approach. Nagoya Math. J. 159, 125–166 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Matsumoto, H., Yor, M.: Exponential functionals of Brownian motion I: Probability laws at fixed time. Probab. Surv. 2, 312–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  30. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437–458 (2012)

    Article  MATH  Google Scholar 

  31. O’Connell, N.: Whittaker functions and related stochastic processes. arXiv:1201.4849 [math.PR]

  32. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, New York (1998)

    Google Scholar 

  33. Schehr, G., Majumdar, S.N., Comtet, A., Randon-Furling, J.: Exact distribution of the maximal height of p vicious walkers. Phys. Rev. Lett. 101, 150601 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  34. Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: Fermion, Poisson and boson point process. J. Funct. Anal. 205, 414–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The present author would like to thank T. Imamura and P. Graczyk for useful discussion on diffusion processes with drifts. A part of the present work was done during the participation of the author in the EPSRC Symposium Workshop on “Interacting particle systems, growth models and random matrices” at the university of Warwick (19–23 March 2012). The author thanks N. O’Connell, J. Ortmann, and J. Warren for invitation to the workshop. This work is supported in part by the Grant-in-Aid for Scientific Research (C) (No. 21540397) of Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Katori.

Appendices

Appendix A: Asymptotics of Determinants

By the Schur function expansion, we can prove that [19, 20] for b∈ℂN

$$ \det_{1 \leq j, k \leq N} \bigl[e^{a_j b_k}\bigr] =\frac{h_N(\boldsymbol{a}) h_N(\boldsymbol{b})}{\prod_{j=1}^N \varGamma(j)} \times\bigl \{1+\mathcal{O}\bigl(|\boldsymbol{a}|\bigr) \bigr\} \quad\mbox{as } |\boldsymbol{a}|\to0. $$
(A.1)

Then

$$ \lim_{|\boldsymbol{\nu}| \to0} \frac{ { \det_{1 \leq j, k \leq N}[e^{\nu_j y_k}]}}{ { \det_{1 \leq j, k \leq N}[e^{\nu_j x_k}]}} =\frac{h_N(\boldsymbol {y})}{h_N(\boldsymbol{x})}, $$
(A.2)

which implies the fact that (1.7) is reduced from (1.13) by taking ν j →0,1≤jN.

Similarly, we can see that

$$\lim_{|\boldsymbol{x}| \to0} \frac{ { \det_{1 \leq j, k \leq N} [e^{x_j y_k/t}]}}{ { \det_{1 \leq j, k \leq N} [e^{\nu_j x_k}]}} = \lim_{|\boldsymbol{x}| \to0} \frac{h_{N}(\boldsymbol{x}/\sqrt{t}) h_N(\boldsymbol{y}/\sqrt{t})}{ h_N(\boldsymbol{\nu}) h_N(\boldsymbol{x})} =\frac{h_N(\boldsymbol {y}/t)}{h_N(\boldsymbol{\nu})}. $$

Since q N (t,y|x) given by (1.8) is equal to \((2 \pi t)^{-N/2} e^{-(|\boldsymbol{x}|^{2}+|\boldsymbol{y}|^{2})/2t} \det_{1 \leq j, k \leq N} [e^{x_{j} y_{k}/t}]\), (1.13) gives

$$\lim_{|\boldsymbol{x}| \to0} p_N^{\boldsymbol{\nu}}(t, \boldsymbol{y}| \boldsymbol{x}) =e^{-t|\boldsymbol{\nu}|^2/2} \det_{1 \leq j, k \leq N}\bigl[e^{\nu_j y_k}\bigr] (2\pi t)^{-N/2} e^{-|\boldsymbol{y}|^2/2t} \frac{h_N(\boldsymbol {y}/t)}{h_N(\boldsymbol{\nu})}, $$

which is equal to (1.21).

Appendix B: On the O’Connell Process with Drift ν

Since the formula (1.17) is not found in [30], here we give explanation for it and then prove (1.20). Note that the derivation of (1.17) with ν=0 was given in [15, 16].

For a>0,ν∈ℝN, we consider the following partial differential equation

$$ \biggl[ \frac{\partial}{\partial t} +\mathcal{H}_N-\frac{1}{a} \boldsymbol{\nu}\cdot\nabla\biggr] u_a^{\boldsymbol{\nu}}(t, \boldsymbol{x})=0, \quad\boldsymbol{x}\in\mathbb{R}^N, \ t \in[0, \infty), $$
(B.1)

where

$$ \mathcal{H}_N=-\frac{1}{2} \Delta+\frac{1}{a^2} \sum _{j=1}^{N-1} e^{-(x_{j+1}-x_j)/a} $$
(B.2)

is identified with the Hamiltonian of an open quantum Toda lattice [30]. Assume that \(\boldsymbol{x}, \boldsymbol{\nu}\in\mathbb{W}_{N}\). Then by the Feynman-Kac formula (see, for instance, [13]) the stationary solution \(u^{\boldsymbol{\nu}}_{a}(\boldsymbol{x})\) of (B.1) with (B.2), which is uniquely determined by imposing the condition \(\lim_{|\boldsymbol{x}| \to\infty, \boldsymbol{x}\in\mathbb {W}_{N}} u_{a}^{\boldsymbol{\nu}}(\boldsymbol{x})=1\), \(\boldsymbol{\nu}\in\mathbb{W}_{N}\), is given by

$$ u_{a}^{\boldsymbol{\nu}}(\boldsymbol{x})=\mathbf{E}^{\boldsymbol {x}} \Biggl[ \exp\Biggl( - \frac{1}{a^2} \sum_{j=1}^{N-1} \int_0^{\infty} e^{-\{\widehat{B}_{j+1}(s)-\widehat{B}_j(s)\}/a} ds \Biggr) \Biggr], $$
(B.3)

where E x[ ⋅ ] denotes the expectation with respect to the Brownian motion (1.5) with drift \(\boldsymbol{\nu}\in\mathbb{W}_{N}\) and starting from \(\boldsymbol{x}\in\mathbb{W}_{N}\). We note that for 0≤T<∞

$$ \mathcal{N}_N^{\boldsymbol{\nu}, \, a}(T, \boldsymbol{x}) = \mathbf{E}^{\boldsymbol{x}} \Biggl[ \exp\Biggl( - \frac{1}{a^2} \sum _{j=1}^{N-1} \int_0^{T} e^{-\{\widehat{B}_{j+1}(s)-\widehat{B}_j(s)\}/a} ds \Biggr) \Biggr] $$
(B.4)

expresses the probability that, in the mutually killing N-particle system with the killing term \(-(1/a^{2}) \sum_{j=1}^{N-1} e^{-(x_{j+1}-x_{j})/a}\) [16], all N Brownian particles with drifts \(\{\widehat{B}_{j}(t)\}_{j=1}^{N}\) starting from \(\boldsymbol{x}\in \mathbb{W}_{N}\) survive up to time T and that (B.3) is its long-term limit, \(\lim_{T \to\infty} \mathcal{N}_{N}^{\boldsymbol{\nu}, \, a}(T, \boldsymbol{x})\), \(\boldsymbol{x}, \boldsymbol{\nu}\in\mathbb{W}_{N}\). On the other hand, the class-one Whittaker function \(\psi^{(N)}_{\boldsymbol{\nu}}(\boldsymbol{x})\) given by (1.15) is an eigenfunction of the Hamiltonian (B.2) with the eigenvalue \(-\sum_{j=1}^{N} \nu_{j}^{2}/2\), ν∈ℂN. By the method of separation of variables, we can show that u a (x) is also expressed by using \(\psi^{(N)}_{\boldsymbol{\nu}}(\boldsymbol{x}/a)\). Then the equality

$$ \lim_{T \to\infty} \mathcal{N}_N^{\boldsymbol{\nu}, \, a}(T, \boldsymbol{x}) =c_N(\boldsymbol{\nu}) e^{-\boldsymbol{\nu}\cdot\boldsymbol{x}/a} \psi^{(N)}_{\boldsymbol{\nu}}( \boldsymbol{x}/a), \quad\boldsymbol{x}, \boldsymbol{\nu}\in\mathbb{W}_N, $$
(B.5)

is established, where c N (ν)=∏1≤j<kN {sinπ(ν k ν j )}/π [31].

We find that \(Q_{N}^{a}(t, \boldsymbol{y}|\boldsymbol{x})\) given by (1.18) solves (B.1) with ν=0 and \(Q_{N}^{a}(0,\boldsymbol{y}|\boldsymbol {x})=\delta(\boldsymbol{x}-\boldsymbol{y})\), and then we can regard it as a transition probability density of the mutually killing Brownian motions with duration t∈[0,∞) from x∈ℝN to y∈ℝN, preserving the number of particles [15, 16]. Then the transition probability density of the mutually killing Brownian motions with drift ν conditioned that all particle survive is given by

$$ P_N^{\boldsymbol{\nu},\, a}(t, \boldsymbol{y}|\boldsymbol{x}) = \lim_{T \to\infty} \frac{\mathcal{N}_N^{\boldsymbol{\nu}, \, a}(T-t, \boldsymbol{y})}{ \mathcal{N}_N^{\boldsymbol{\nu}, \, a}(T, \boldsymbol{x})} Q_N^{\boldsymbol{\nu}, \, a}(t, \boldsymbol{y}|\boldsymbol{x}) $$
(B.6)

with the drift transform of (1.18) with parameter a>0

$$ Q_N^{\boldsymbol{\nu}, \, a}(t, \boldsymbol{y}|\boldsymbol{x}) = \exp\biggl\{ - \frac{t|\boldsymbol{\nu}|^2}{2 a^2} +\frac{\boldsymbol{\nu}}{a} \cdot(\boldsymbol{y}-\boldsymbol{x}) \biggr\} Q_N^{a}(t,\boldsymbol{y}|\boldsymbol{x}). $$
(B.7)

If \(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\nu}\in\mathbb {W}_{N}\), by (B.5), (B.6) is equal to (1.17), which should solve (1.16) with the initial condition \(P_{N}^{\boldsymbol{\nu}, \, a}(0, \boldsymbol{y}|\boldsymbol {x})=\delta(\boldsymbol{x}-\boldsymbol{y})\).

The class-one Whittaker function has the alternating sum formula [1],

$$ \psi^{(N)}_{\boldsymbol{\nu}}(\boldsymbol{x})=c_N(\boldsymbol{ \nu})^{-1} \sum_{\sigma\in\mathcal{S}_N} \operatorname {sgn}(\sigma) m^{(N)}\bigl(\boldsymbol{x}, \sigma(\boldsymbol{\nu})\bigr), $$
(B.8)

where σ(ν)=(ν σ(1),…,ν σ(N)) for each permutation \(\sigma\in\mathcal{S}_{N}\). Here m (N)(x,ν) is the fundamental Whittaker function, which is normalized here as lim a→0 m (N)(x/a,a ν)=e νx for \(\boldsymbol{x}\in\mathbb{W}_{N}\). Since c N (a ν)≃a N(N−1)/2 h N (ν) as a→0, we have

$$ \lim_{a \to0} a^{N(N-1)/2} \psi^{(N)}_{a \boldsymbol{\nu }}( \boldsymbol{x}/a) =\frac{ {\det_{1 \leq j, k \leq N}[e^{\nu_j x_k}]}}{h_N(\boldsymbol{\nu})} \quad\mbox{for }\boldsymbol{x},\boldsymbol{\nu}\in\mathbb{W}_N. $$
(B.9)

Moreover, the density of Sklyanin measure (1.19) has the asymptotics in a→0 as s N (a k)≃a N(N−1)(h N (k))2/{(2π)N N!}, and thus (1.18) gives [16]

(B.10)

Then (1.20) is concluded. Note that the first equality in (B.10) can be interpreted in terms of the Slater determinants used in quantum mechanics [33].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katori, M. Reciprocal Time Relation of Noncolliding Brownian Motion with Drift. J Stat Phys 148, 38–52 (2012). https://doi.org/10.1007/s10955-012-0527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0527-5

Keywords

Navigation