Skip to main content
Log in

Survival Probability of Mutually Killing Brownian Motions and the O’Connell Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recently O’Connell introduced an interacting diffusive particle system in order to study a directed polymer model in 1+1 dimensions. The infinitesimal generator of the process is a harmonic transform of the quantum Toda-lattice Hamiltonian by the Whittaker function. As a physical interpretation of this construction, we show that the O’Connell process without drift is realized as a system of mutually killing Brownian motions conditioned that all particles survive forever. When the characteristic length of interaction killing other particles goes to zero, the process is reduced to the noncolliding Brownian motion (the Dyson model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baudoin, F., O’Connell, N.: Exponential functionals of Brownian motion and class-one Whittaker functions. Ann. Inst. Henri Poincaré B, Probab. Stat. 47, 1096–1120 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. Borodin, A., Corwin, I.: MacDonald processes. arXiv:1111.4408 [math.PR]

  3. Cardy, J., Katori, M.: Families of vicious walkers. J. Phys. A 36, 609–629 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. arXiv:1110.3489 [math.PR]

  5. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984)

    Article  ADS  MATH  Google Scholar 

  7. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a Gauss–Givental representations of quantum Toda chain wave equation. Int. Math. Res. Not. 1–23 (2006)

  8. Gerasimov, A., Lebedev, D., Oblezin, S.: Baxter operator and Archimedean Hecke algebra. Commun. Math. Phys. 284, 867–896 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Givental, A.: Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. In: Topics in Singular Theory. AMS Trans. Ser. 2, vol. 180, pp. 103–115. Am. Math. Soc., Rhode Island (1997)

    Google Scholar 

  10. Gorsky, A., Nechaev, S., Santachiara, R., Schehr, G.: Random ballistic growth and diffusion in symmetric spaces. arXiv:1110.3524 [math-ph]

  11. Grabiner, D.J.: Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré Probab. Stat. 35, 177–204 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Ishii, T., Stade, E.: New formulas for Whittaker functions on GL(n,ℝ). J. Funct. Anal. 244, 289–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jacquet, H.: Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. Fr. 95, 243–309 (1967)

    MathSciNet  MATH  Google Scholar 

  14. Joe, D., Kim, B.: Equivariant mirrors and the Virasoro conjecture for flag manifolds. Int. Math. Res. Not. 15, 859–882 (2003)

    Article  MathSciNet  Google Scholar 

  15. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  16. Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141–1164 (1959)

    MathSciNet  MATH  Google Scholar 

  17. Katori, M.: O’Connell’s process as a vicious brownian motion. Phys. Rev. E. 84, 061144 (2011). doi:10.1103/PhysRevE.84.061144. arXiv:1110.1845 [math-ph]

    Article  ADS  Google Scholar 

  18. Katori, M., Tanemura, H.: Scaling limit of vicious walks and two-matrix model. Phys. Rev. E 66, 011105 (2002)

    Article  ADS  Google Scholar 

  19. Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. 293, 469–497 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Katori, M., Tanemura, H.: Noncolliding processes, matrix-valued processes and determinantal processes. Sūgaku Expo. 24, 263–289 (2011). arXiv:1005.0533 [math.PR]

    MathSciNet  Google Scholar 

  21. Kharchev, S., Lebedev, D.: Integral representation for the eigenfunctions of a quantum periodic Toda chain. Lett. Math. Phys. 50, 55–77 (1999)

    Article  MathSciNet  Google Scholar 

  22. Kharchev, S., Lebedev, D.: Eigenfunctions of GL(N,ℝ) Toda chain: the Mellin–Barnes representation. JETP Lett. 71, 235–238 (2000)

    Article  ADS  Google Scholar 

  23. Kharchev, S., Lebedev, D.: Integral representations for the eigenfunctions of quantum open and periodic Toda chains from the QISM formalism. J. Phys. A, Math. Gen. 34, 2247–2258 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Kostant, B.: Quantisation and representation theory. In: Representation Theory of Lie Groups, Proc. SRC/LMS Research Symposium, Oxford, 1977. LMS Lecture Notes, vol. 34, pp. 287–316. Cambridge University Press, Cambridge (1977)

    Google Scholar 

  25. Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall, New York (1965)

    MATH  Google Scholar 

  26. Matsumoto, H., Yor, M.: An analogue of Pitman’s 2MX theorem for exponential wiener functionals, part I: A time-inversion approach. Nagoya Math. J. 159, 125–166 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Matsumoto, H., Yor, M.: Exponential functionals of Brownian motion. I: Probability laws at fixed time. Probab. Surv. 2, 312–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. O’Connell, N.: Directed polymers and the quantum toda lattice. Ann. Probab. 40, 437–458 (2012). doi:10.1214/10-AOP632. arXiv:0910.0069 [math.PR]

    Article  Google Scholar 

  29. O’Connell, N.: Whittaker functions and related stochastic processes. arXiv:1201.4849 [math.PR]

  30. Pitman, J.W.: One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7, 511–526 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Semenov-Tian-Shansky, M.: Quantisation of open Toda lattices. In: Arnol’d, V.I., Novikov, S.P. (eds.) Dynamical Systems VII: Integrable Systems, Nonholonomic Dynamical Systems. Encyclopedia of Mathematical Sciences, vol. 16. Springer, Berlin (1994)

    Google Scholar 

  32. Sklyanin, E.K.: The quantum Toda chain. In: Non-linear Equations in Classical and Quantum Field Theory. Lect. Notes in Physics, vol. 226, pp. 195–233. Springer, Berlin (1985)

    Chapter  Google Scholar 

  33. Stade, E.: On explicit integral formulas for GL(n,ℝ)-Whittaker functions. Duke Math. J. 60, 313–362 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stade, E.: Mellin transforms of GL(n,ℝ) Whittaker functions. Am. J. Math. 123, 121–161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  36. Toda, M.: Theory of Nonlinear Lattices, 2nd edn. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  37. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

Download references

Acknowledgements

The present author would like to thank T. Sasamoto and T. Imamura for useful discussion on the present work. A part of the present work was done during the participation of the present author in École de Physique des Houches on “Vicious Walkers and Random Matrices” (May 16–27, 2011). The author thanks G. Schehr, C. Donati-Martin, and S. Péché for well-organization of the school. This work is supported in part by the Grant-in-Aid for Scientific Research (C) (No. 21540397) of Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Katori.

Appendix: One-Dimensional Killing Brownian Motion

Appendix: One-Dimensional Killing Brownian Motion

By (1.12), we can put \(K_{i \xi k}(e^{-x/\xi})=e^{i k x} \widehat{K}_{i \xi k}(e^{-x/\xi})\) with \(\widehat{K}_{\nu}(z)=(2^{\nu} \Gamma(\nu+1/2)/\sqrt{\pi})\cdot\allowbreak \int_{0}^{\infty} du \cos(zu)/(1+u^{2})^{\nu+1/2}\). Changing the integral variable in (1.9) by \(k \sqrt{t/2} -i(x-y)/\sqrt{2t}=\mu\), the transition probability density can be written as

with \(\alpha(\mu) =\xi\sqrt{2/t} \{\mu+i(x-y)/\sqrt{2t}\}\). For |x|<∞, as \(x/\sqrt{t} \to0\), \(\alpha(\mu) \simeq\xi\sqrt{2/t}(\mu-iy/\sqrt{2t})\to0\), and \(\Gamma(i \alpha(\mu))\simeq\{i \xi\sqrt{2/t} (\mu-iy/\sqrt{2t}) \}^{-1}\). Then

in \(x/\sqrt{t} \to0\), since \(\widehat{K}_{0}=K_{0}\) by definition. It gives through (1.10)

$$\mathcal{N}(t,x) = \xi^2 \sqrt{\frac{2}{\pi}} t^{-3/2}K_0\bigl(e^{-x/\xi}\bigr) I_t \times\biggl\{ 1+\mathcal{O} \biggl( \frac{x}{\sqrt{t}} \biggr) \biggr\} $$
(A.1)

with

By (1.13), for β>0, K 0(e βx) is written as

where we have set s=e βv. In the limit β→∞, e β(xv)+e β(x+v)=0, if v<x and v>−x, and e β(xv)+e β(x+v)=∞, otherwise. Therefore

$$\lim_{\beta\to\infty} \beta^{-1} K_0\bigl(e^{-\beta x}\bigr) = \frac{1}{2} \int_{-x}^{x} dv\mathbf{1}(x>0) = x \, \mathbf{1}(x>0). $$
(A.2)

Then \(K_{0}(e^{-\sqrt{2t}u/\xi}) \simeq \sqrt{2t}u/\xi\mathbf{1}(u > 0)\) in t→∞, and

$$I_t = \frac{2t}{\xi} \int_{0}^{\infty}e^{-u^2} \bigl(1+2u^2\bigr) u \, du \times\bigl\{1+o(1)\bigr\} =\frac{3t}{\xi} \times\bigl\{1+o(1)\bigr\} \quad\mbox {in} \ t \to \infty.$$

Put this result into (A.1), then we obtain the asymptotics (1.14).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katori, M. Survival Probability of Mutually Killing Brownian Motions and the O’Connell Process. J Stat Phys 147, 206–223 (2012). https://doi.org/10.1007/s10955-012-0472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0472-3

Keywords

Navigation