Skip to main content
Log in

Anderson-like Transition for a Class of Random Sparse Models in d≥2 Dimensions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We show that the Kronecker sum of d≥2 copies of a random one-dimensional sparse model displays a spectral transition of the type predicted by Anderson, from absolutely continuous around the center of the band to pure point around the boundaries. Possible applications to physics and open problems are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aizenman, M., Warzel, S.: Absence of mobility edge for Anderson random potential on tree graphs at weak disorder. arXiv:1109.2210

  2. Aizenman, M., Sims, R., Warzel, S.: Absolutely continuous spectra of quantum tree graphs with weak disorder. Commun. Math. Phys. 264, 371–389 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  4. Bellissard, J., Schulz-Baldes, H.: Subdiffusive quantum transport for 3D Hamiltonians with absolutely continuous spectra. J. Stat. Phys. 99, 587–594 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Chung, K.L.: A Course in Probability Theory, 2nd edn. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  6. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser Boston, Cambridge (1990)

    Book  MATH  Google Scholar 

  7. Combes, J.-M., Mantica, G.: Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices. In: Long Time Behaviour of Classical and Quantum Systems, Bologna, 1999. Ser. Concr. Appl. Math., vol. 1, pp. 107–123. World Scientific, River Edge (2001)

    Chapter  Google Scholar 

  8. de Carvalho, S.L., Marchetti, D.H.U., Wreszinski, W.F.: On the uniform distribution of the Prüfer angles and its implication to a sharp spectral transition of Jacobi matrices with randomly sparse perturbations. arXiv:1006.2849

  9. de Carvalho, S.L., Marchetti, D.H.U., Wreszinski, W.F.: Sparse Block-Jacobi matrices with exact Hausdorff dimension. J. Math. Anal. Appl. 368, 218–234 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Carvalho, S.L., Marchetti, D.H.U., Wreszinski, W.F.: Pointwise decay of Fourier-Stieltjes transform of the spectral measure for Jacobi matrices with faster-than-exponential sparse perturbations. arXiv:1010.5274

  11. Demuth, M., Krishna, M.: Determining Spectra in Quantum Theory. Birkhäuser Boston, Cambridge (2005)

    MATH  Google Scholar 

  12. Esseen, C.G.: A note on Fourier-Stieltjes transforms and absolutely continuous functions. Math. Scand. 2, 153–157 (1954)

    MathSciNet  MATH  Google Scholar 

  13. Goldsheidt, I.Ya., Molchanov, S., Pastur, L.: A random homogeneous Schrödinger operator has a pure point spectrum. Funkcional. Anal. i Priložen. 11, 1–10 (1977)

    Article  Google Scholar 

  14. Gilbert, D., Pearson, D.: On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128, 30–56 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Howland, J.S.: Quantum stability. In: Balslev, E. (ed.) Schrödinger Operators. Lecture Notes in Physics, vol. 403. Springer, Berlin (1992)

    Google Scholar 

  16. Howland, J.S.: Perturbation theory of dense point spectra. J. Funct. Anal. 74, 52–80 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, X., Taylor, J.S.: Fractal properties of products and projections of measures in ℝd. Math. Proc. Camb. Philos. Soc. 115, 527–544 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ichinose, T.: On the spectra of tensor products of linear operators in Banach spaces. J. Reine Angew. Math. 244, 119–153 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jitomirskaya, S.: Ergodic Schrödinger operators (on one foot). In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday. Proc. Sympos. Pure Math., vol. 76, Part 2, pp. 613–647. Am. Math. Soc., Providence (2007)

    Google Scholar 

  20. Jona-Lasinio, G., Martinelli, F., Scoppola, E.: New approach to the semiclassical limit of quantum mechanics. I. Multiple tunnelings in one dimension. Commun. Math. Phys. 80, 223–254 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Katznelson, Y.: An Introduction to Harmonic Analysis. Dover, New York (1976)

    MATH  Google Scholar 

  22. Klein, A.: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133, 163–184 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kiselev, A., Last, Y., Simon, B.: Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators. Commun. Math. Phys. 194, 1–45 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  24. Krutikov, D., Remling, C.: Schrödinger operators with sparse potentials: asymptotics of the Fourier transform of the spectral measure. Commun. Math. Phys. 223, 509–532 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys. 78, 201–246 (1980/81)

    Article  MathSciNet  ADS  Google Scholar 

  26. Kahane, J.P., Salem, R.: Sur la convolution d’une infinité de distributions de Bernoulli. Colloq. Math. 6, 193–202 (1958)

    MathSciNet  MATH  Google Scholar 

  27. Kahane, J.P., Salem, R.: Ensembles Parfaits et Séries Trigonométriques. Hermann, Paris (1994)

    MATH  Google Scholar 

  28. Last, Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142, 406–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Molchanov, S.: Multiscattering on sparse bumps. In: Advances in Differential Equations and Mathematical Physics, Atlanta, GA, 1997. Contemp. Math., vol. 217, pp. 157–181. Am. Math. Soc., Providence (1998)

    Chapter  Google Scholar 

  30. Molchanov, S.A.: Multiscale averaging for ordinary differential equations. Applications to the spectral theory of one-dimensional Schrödinger operator with sparse potentials. In: Homogenization. Series on Advances in Math. Appl. Sci., vol. 50, pp. 316–397. World Scientific, Singapore (1999)

    Chapter  Google Scholar 

  31. Molchanov, S., Vainberg, B.: Scattering on the system of the sparse bumps: multidimensional case. Appl. Anal. 71, 167–185 (1998)

    Article  MathSciNet  Google Scholar 

  32. Malozemov, L., Molchanov, S.: Quoted in [42]

  33. Marchetti, D.H.U., Wreszinski, W.F., Guidi, L.F., Angelo, R.M.: Spectral transition in a sparse model and a class of nonlinear dynamical systems. Nonlinearity 20, 765–787 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Pearson, D.B.: Singular continuous measures in scattering theory. Commun. Math. Phys. 60, 13–36 (1978)

    Article  ADS  MATH  Google Scholar 

  35. Pastur, L., Figotin, A.: Spectra of Random and Almost-periodic Operators. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  36. Peres, Y., Shmerkin, P.: Resonance between Cantor sets. Ergod. Theory Dyn. Syst. 29, 201–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Remling, C.: Math. Rev. MR2300896 (2008a:81067)

  38. del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization. J. Anal. Math. 69, 153–200 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Simon, B., Wolff, T.: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Commun. Pure Appl. Math. 39, 75–90 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Reed, M., Simon, B.: Methods of Modern Mathematical Physics III: Scattering Theory. Academic Press, London (1979)

    MATH  Google Scholar 

  41. Simon, B.: Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant. J. Funct. Anal. 63, 123–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Simon, B.: Operators with singular continuous spectrum: VII Examples with borderline time decay. Commun. Math. Phys. 176, 713–722 (1996)

    Article  ADS  MATH  Google Scholar 

  43. Sinha, K.B.: On the absolutely and singularly continuous subspaces in scattering theory. Ann. Inst. H. Poincaré 26, 263–277 (1977)

    Google Scholar 

  44. Stollmann, P.: Caught by Disorder: Bound States in Random Media. Birkhäuser Boston, Cambridge (2001)

    Book  MATH  Google Scholar 

  45. Strichartz, R.: Fourier asymptotics of fractal measures. J. Funct. Anal. 89, 154–187 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shklovskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors. Springer, Heidelberg (1984)

    Google Scholar 

  47. Zlatoš, A.: Sparse potentials with fractional Hausdorff dimension. J. Funct. Anal. 207, 216–252 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingos H. U. Marchetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, D.H.U., Wreszinski, W.F. Anderson-like Transition for a Class of Random Sparse Models in d≥2 Dimensions. J Stat Phys 146, 885–899 (2012). https://doi.org/10.1007/s10955-012-0439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0439-4

Keywords

Navigation