Skip to main content
Log in

Spherical Ornstein-Uhlenbeck Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The paper considers random motion of a point on the surface of a sphere, in the case where the angular velocity is determined by an Ornstein-Uhlenbeck process. The solution is fully characterised by only one dimensionless number, the persistence angle, which is the typical angle of rotation during the correlation time of the angular velocity.

We first show that the two-dimensional case is exactly solvable. When the persistence angle is large, a series for the correlation function has the surprising property that its sum varies much more slowly than any of its individual terms.

In three dimensions we obtain asymptotic forms for the correlation function, in the limits where the persistence angle is very small and very large. The latter case exhibits a complicated transient, followed by a much slower exponential decay. The decay rate is determined by the solution of a radial Schrödinger equation in which the angular momentum quantum number takes an irrational value, namely \(j=\frac{1}{2}(\sqrt{17}-1)\).

Possible applications of the model to objects tumbling in a turbulent environment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  2. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36, 823–841 (1930)

    Article  ADS  Google Scholar 

  3. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 2nd edn. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  4. Berry, M.V.: Faster than Fourier. In: Anandan, J.S., Safko, J.L. (eds.) Quantum Coherence and Reality; in Celebration of the 60th Birthday of Yakir Aharonov, pp. 55–65. World Scientific, Singapore (1994)

    Google Scholar 

  5. Wilkinson, M.: An exact effective Hamiltonian for a perturbed Landau level. J. Phys. A 20, 1761–1771 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  7. Landau, L.D., Lifshitz, I.M.: Quantum Mechanics. Pergamon, Oxford (1958)

    MATH  Google Scholar 

  8. Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  9. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, New York (1999)

    MATH  Google Scholar 

  10. Güttler, C., Blum, J., Zsom, A., Ormel, C.W., Dullemond, C.P.: The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys. 513, A56 (2010)

    Article  Google Scholar 

  11. Pruppacher, H.R., Klett, J.D.: Microphysics of Clouds and Precipitation, 2nd edn. Kluwer, Dordrecht (1997)

    Google Scholar 

  12. Zimmermann, R., Gasteuil, Y., Bourgoin, M., Volk, R., Pumir, A., Pinton, J.F.: Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys. Rev. Lett. 106, 154501 (2011)

    Article  ADS  Google Scholar 

  13. Zimmermann, R., Gasteuil, Y., Bourgoin, M., Volk, R., Pumir, A., Pinton, J.F.: Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow. Rev. Sci. Instrum. 82, 0333906 (2011)

    Article  Google Scholar 

  14. Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A 102, 16 (1922)

    Google Scholar 

  15. Savaş, O.: On flow visualisation using reflective flakes. J. Fluid Mech. 152, 235–248 (1985)

    Article  ADS  Google Scholar 

  16. Puliafito, A., Turitsyn, K.: Numerical study of polymer tumbling in linear shear flows. Physica D 211, 9–22 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Lebedev, V.V., Turitsyn, K.S., Vergeles, S.S.: Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99, 218101 (2007)

    Article  ADS  Google Scholar 

  18. Bretherton, F.P.: The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284–304 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Girimaji, S.S., Pope, S.B.: A diffusion model for velocity gradients in turbulence. Phys. Fluids A 2, 242–256 (1990)

    Article  ADS  MATH  Google Scholar 

  20. Brunk, B.K., Koch, D.L., Lion, L.W.: Turbulent coagulation of colloidal particles. J. Fluid Mech. 364, 81–113 (1998)

    Article  ADS  MATH  Google Scholar 

  21. Pumir, A., Wilkinson, M.: Orientation statistics of small particles in turbulence. New. J. Phys. (2011, to appear)

  22. Shapiro, V.E., Loginov, V.M.: ‘Formulae of differentiation’ and their use for solving stochastic equations. Physica A 91, 563–574 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  23. Falkovich, G., Musacchio, S., Piterbarg, L., Vucelja, M.: Inertial particles driven by a telegraph noise. Phys. Rev. E 76, 026313 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Shin, M., Koch, D.L.: Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143 (2005)

    Article  ADS  MATH  Google Scholar 

  25. Epstein, P.S.: On the resistance experienced by spheres in their motion through gases. Phys. Rev. 22, 710 (1924)

    Article  ADS  Google Scholar 

  26. Parsa, S., Guasto, J.S., Kishore, M., Ouellette, N.T., Gollub, J.P., Voth, G.A.: Rotation and alignment of rods in two-dimensional chaotic flow. Phys. Fluids 23, 043302 (2011)

    Article  ADS  Google Scholar 

  27. Bezuglyy, V., Mehlig, B., Wilkinson, M.: Poincare indices of rheoscopic visualisations. Europhys. Lett. 89, 34003 (2010)

    Article  ADS  Google Scholar 

  28. Weisstein, E.W.: MathWorld—A Wolfram Web resource. URL: http://mathworld.wolfram.com (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, M., Pumir, A. Spherical Ornstein-Uhlenbeck Processes. J Stat Phys 145, 113 (2011). https://doi.org/10.1007/s10955-011-0332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-011-0332-6

Keywords

Navigation