Skip to main content
Log in

Random Walk Laws by A.N. Kolmogorov as the Basics for Understanding Most Phenomena of the Nature

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In 1934, A.N. Kolmogorov considered the random walks of the 6D vector X, U of velocities generated by the Markov process and corresponding coordinates. The Fokker–Planck type equation using the scales of mean squares of velocity and coordinates as solutions was proposed to describe the time evolution of probability density of random process p(X, U, t). In 1959, A.M. Obukhov excluded time from these scales and obtained formulas in the form of asymptotes for the small-scale turbulence formulated in 1941. However, these results allow deeper insight into a wider range of phenomena, such as the size distribution of lithospheric plates (Bird [6]); the fetch laws describing wind wave growth (Toba [15]); and other phenomena (see specifically (Golitsyn [25]) considering the scales manifested in galaxies). Random accelerations and their integration set the velocities, which, being integrated, set the coordinates of particle ensembles. All these factors promote the energy input into the system increasing with time, whose growth rate ε is the doubled diffusion coefficient in the space of velocities, according to the Kolmogorov equation. It was found that the mean square velocity obtained upon solving the Fokker–Planck equation grows with time—theoretical physicists have long been aware of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Kolmogorov, “The local structure of turbulence in an incompressible fluid at very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30 (4), 299–303 (1941).

    Google Scholar 

  2. A. M. Obukhov, “On energy distribution in the turbulent flow spectrum,” Izv. Akad. Nauk 32 (1), 22–24 (1941).

    Google Scholar 

  3. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics, Vol. 1 (MIT Press, 1971; Fizmatlit, Moscow, 1965); Vol. 2 (MIT Press, 1975; Fizmatlit, Moscow, 1967).

    Google Scholar 

  4. Y. Y. Kagan, “Observational evidence for earthquakes as a non-linear dynamic process,” Phys. D (Amsterdam) 77 (2), 160–192 (1994).

    Article  Google Scholar 

  5. G. S. Golitsyn, “The place of the Gutenberg–Richter law among other statistical laws of nature,” Comput. Seismol., No. 32, 138–161 (2003).

    Google Scholar 

  6. P. Bird, “An updated digital model of plate boundaries,” Geochem. Geophys. Geosyst. 4 (3), 1027 (2003). doi 10.1029/2001GC000252

    Article  Google Scholar 

  7. A. B. Kazansky, “Studying the motion of energy dissipation process in highly fractured glaciers using remote sensing technique,” Arch. Glaciol. 19 (3), 239–248 (1987).

    Article  Google Scholar 

  8. Y. Taguchi, “Numerical study of granular turbulence and an appearance of the energy spectrum in the absence of mean flow,” Phys. D 80 (1), 61–71 (1995).

    Google Scholar 

  9. G. S. Golitsyn, Statistics and Dynamics of Natural Processes and Phenomena (Krasand, Moscow, 2012) [in Russian].

    Google Scholar 

  10. E. A. Novikov, “Functionals and the random-force method in the turbulence theory,” Zh. Eksp. Teor. Fiz. 47 (5), 1919–1926 (1964).

    Google Scholar 

  11. A. N. Kolmogorov, “Zufallige Bewegungen,” Ann. Math 35, 116–117 (1934).

    Article  Google Scholar 

  12. A. M. Obukhov, “Description of turbulence in terms of Lagrangion variables,” Adv. Geophys. 6, 113–116 (1959).

    Article  Google Scholar 

  13. E. B. Gledzer and G. S. Golitsyn, “Scaling and finite ensembles of particles in motion with the energy influx,” Dokl. Phys. 55 (8), 369–373 (2010).

    Article  Google Scholar 

  14. G. J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P. A. E. M. Janssen, Dynamics and Modelling of Ocean Waves (Cambridge University Press, Cambridge, 1994).

    Book  Google Scholar 

  15. Y. Toba, “Stochastic form of the growth of wind waves in a single-parameter representation with physical implications,” J. Phys. Oceanogr. 8 (5), 494–507 (1978).

    Article  Google Scholar 

  16. G. I. Barenblatt, Scaling (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  17. G. Schubert, D. Turcotte, and P. Olson, Mantle Convection in the Earth and Planets (Cambridge University Press, Cambridge, 2001).

    Book  Google Scholar 

  18. G. S. Golitsyn, “Energy cycle of geodynamics and the seismic process,” Izv., Phys. Solid Earth 43 (6), 443–446 (2007).

    Article  Google Scholar 

  19. P. W. Bridgman, Dimensional Analysis (Yale Univ. Press, New Haven, 1922; RKhD, Izhevsk, 2001).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media (GITTL, Moscow, 1944) [in Russian].

    Google Scholar 

  21. B. B. Kadomtsev, Collective Phenomena in Plasma (Fizmatgiz, Moscow, 1976) [in Russian].

    Google Scholar 

  22. G. S. Golitsyn, “Phenomenological explanation for the shape of the spectrum of cosmic rays with energies E >10 GeV,” Astron. Lett. 31 (7), 446–451 (2005).

    Article  Google Scholar 

  23. A. V. Karelin, O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “New measurements of the energy spectra of high-energy cosmic-ray protons and helium nuclei with the calorimeter in the PAMELA experiment,” J. Exp. Theor. Phys. 119 (3), 448–452 (2014).

    Article  Google Scholar 

  24. G. S. Golitsyn, “Earthquakes from the standpoint of scaling theory,” Dokl. Earth Sci. 346 (1), 166–169 (1996).

    Google Scholar 

  25. G. S. Golitsyn, “Similarity and dimensional theory for galaxies: Explanation of long-known results of observations,” Dokl. Phys. 62 (8), 403–406 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Golitsyn.

Additional information

Original Russian Text © G.S. Golitsyn, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2018, Vol. 54, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golitsyn, G.S. Random Walk Laws by A.N. Kolmogorov as the Basics for Understanding Most Phenomena of the Nature. Izv. Atmos. Ocean. Phys. 54, 223–228 (2018). https://doi.org/10.1134/S0001433818030064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818030064

Keywords

Navigation