Skip to main content
Log in

Deconstructing Classical Water Models at Interfaces and in Bulk

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using concepts from perturbation and local molecular field theories of liquids we divide the potential of the SPC/E water model into short and long ranged parts. The short ranged parts define a minimal reference network model that captures very well the structure of the local hydrogen bond network in bulk water while ignoring effects of the remaining long ranged interactions. This deconstruction can provide insight into the different roles that the local hydrogen bond network, dispersion forces, and long ranged dipolar interactions play in determining a variety of properties of SPC/E and related classical models of water. Here we focus on the anomalous behavior of the internal pressure and the temperature dependence of the density of bulk water. We further utilize these short ranged models along with local molecular field theory to quantify the influence of these interactions on the structure of hydrophobic interfaces and the crossover from small to large scale hydration behavior. The implications of our findings for theories of hydrophobicity and possible refinements of classical water models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford, New York (1987)

    MATH  Google Scholar 

  2. Ashbaugh, H.S.: Entropy crossover from molecular to macroscopic cavity hydration. Chem. Phys. Lett. 477, 109–111 (2009)

    Article  ADS  Google Scholar 

  3. Ashbaugh, H.S., Collett, N.J., Hatch, H.W., Staton, J.A.: Assessing the thermodynamic signatures of hydrophobic hydration for several common water models. J. Chem. Phys. 132, 124504 (2010)

    Article  ADS  Google Scholar 

  4. Ben-Naim, A., Stillinger, F.H.: Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes. Wiley-Interscience, New York (1972)

    Google Scholar 

  5. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNiola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984)

    Article  ADS  Google Scholar 

  6. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Article  Google Scholar 

  7. Berne, B.J., Weeks, J.D., Zhou, R.: Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60, 85–103 (2009)

    Article  ADS  Google Scholar 

  8. Buldyrev, S.V., Kumar, P., Debenedetti, P.G., Rossky, P.J., Stanley, H.E.: Water-like solvation thermodynamics in a spherically symmetric solvent model with two characteristic lengths. Proc. Natl. Acad. Sci. USA 104, 20177–20182 (2007)

    Article  ADS  Google Scholar 

  9. Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)

    Article  ADS  Google Scholar 

  10. Chen, Y.G., Weeks, J.D.: Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions. Proc. Natl. Acad. Sci. USA 103, 7560 (2006)

    Article  ADS  Google Scholar 

  11. Chen, Y.G., Kaur, C., Weeks, J.D.: Connecting systems with short and long ranged interactions: local molecular field theory for ionic fluids. J. Phys. Chem. B 108, 19874 (2004)

    Article  Google Scholar 

  12. Denesyuk, N.A., Weeks, J.D.: A new approach for efficient simulation of Coulomb interactions in ionic fluids. J. Chem. Phys. 128, 124109 (2008)

    Article  ADS  Google Scholar 

  13. Goharshadi, E.K., Morsali, A., Mansoori, G.A.: A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids. Chem. Phys. 331, 332–338 (2007)

    Article  ADS  Google Scholar 

  14. Guillot, B.: A reappraisal of what we have learnt during three decades of computer simulations of water. J. Mol. Liq. 101, 219–260 (2002)

    Article  Google Scholar 

  15. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 3rd edn. Academic Press, New York (2006)

    Google Scholar 

  16. Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics, 91st edn. (Internet Version 2011). CRC Press/Taylor and Francis, Boca Raton (2011)

    Google Scholar 

  17. Huang, D.M., Chandler, D.: The hydrophobic effect and the influence of solute-solvent attractions. J. Phys. Chem. B 106, 2047–2053 (2002)

    Article  Google Scholar 

  18. Huang, D.M., Geissler, P.L., Chandler, D.: Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105, 6704–6709 (2001)

    Article  Google Scholar 

  19. Iordanov, T.D., Schenter, G.K., Garrett, B.C.: Sensitivity analysis of thermodynamic properties of liquid water: a general approach to improve empirical potentials. J. Phys. Chem. A 110, 762–771 (2006)

    Article  Google Scholar 

  20. Jirsák, J., Nezbeda, I.: Molecular mechanisms underlying the thermodynamics properties of water. J. Mol. Liq. 134, 99–106 (2007)

    Article  Google Scholar 

  21. Kuo, I.-F.W., Mundy, C.J., Eggimann, B.L., McGrath, M.J., Siepmann, J.I., Chen, B., Vieceli, J., Tobias, D.J.: Structure and dynamics of the aqueous liquid-vapor interface: a comprehensive particle-based simulation study. J. Phys. Chem. B 110, 3738–3746 (2006)

    Article  Google Scholar 

  22. Lee, S.H., Rossky, P.J.: A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular dynamics simulation study. J. Chem. Phys. 100, 3334–3345 (1994)

    Article  ADS  Google Scholar 

  23. Lee, C.Y., McCammon, J.A., Rossky, P.J.: The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys. 80, 4448–4455 (1984)

    Article  ADS  Google Scholar 

  24. Lum, K., Chandler, D., Weeks, J.D.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999)

    Article  Google Scholar 

  25. Luzar, A., Chandler, D.: Effect of environment on hydrogen bond dynamics in liquid water. Phys. Rev. Lett. 76, 928–931 (1996)

    Article  ADS  Google Scholar 

  26. Marcotte, E., Stillinger, F.H., Torquato, S.: Optimized monotonic convex pair potentials stabilize low-coordinated crystals. Soft Matter 7, 2332–2335 (2011)

    Article  ADS  Google Scholar 

  27. Remsing, R.C., Rodgers, J.M., Weeks, J.D.: Unpublished

  28. Rodgers, J.M., Weeks, J.D.: Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water. Proc. Natl. Acad. Sci. USA 105, 19136 (2008)

    Article  ADS  Google Scholar 

  29. Rodgers, J.M., Weeks, J.D.: Local molecular field theory for the treatment of electrostatics. J. Phys., Condens. Matter 20, 494206 (2008)

    Article  Google Scholar 

  30. Rodgers, J.M., Weeks, J.D.: Accurate thermodynamics for short-ranged truncations of Coulomb interactions in site-site molecular models. J. Chem. Phys. 131, 244108 (2009)

    Article  ADS  Google Scholar 

  31. Rodgers, J.M., Hu, Z., Weeks, J.D.: On the efficient and accurate short-ranged simulations of uniform polar molecular liquids. Mol. Phys. 109, 1195–1211 (2011)

    Article  ADS  Google Scholar 

  32. Schmidt, J., VandeVondele, J., Kuo, I.-F.W., Sebastiani, D., Siepmann, J.I., Hutter, J., Mundy, C.J.: Isobaric-isothermal molecular dynamics simulations utilizing density functional theory: an assessment of the structure and density of water at near-ambient conditions. J. Phys. Chem. B 113, 11959–11964 (2009)

    Article  Google Scholar 

  33. Shah, J.K., Asthagiri, D., Pratt, L.R., Paulaitis, M.E.: Balancing local order and long-ranged interactions in the molecular theory of liquid water. J. Chem. Phys. 127, 144508 (2007)

    Article  ADS  Google Scholar 

  34. Smith, W., Yong, C., Rodger, P.: DL_POLY: application to molecular simulation. Mol. Simul. 28, 385–471 (2002)

    Article  MATH  Google Scholar 

  35. Stillinger, F.H.: Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solution Chem. 2, 141–158 (1973)

    Article  Google Scholar 

  36. Varilly, P., Patel, A.J., Chandler, D.: An improved coarse-grained model of solvation and the hydrophobic effect. J. Chem. Phys. 134, 074109 (2011)

    Article  ADS  Google Scholar 

  37. Vega, C., Abascal, J.L.F., Conde, M.M., Aragones, J.L.: What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 141, 251–276 (2009)

    Article  ADS  Google Scholar 

  38. Wang, J., Román-Pérez, G., Soler, J.M., Artacho, E., Fernández-Serra, M.-V.: Density, structure, and dynamics of water: the effect of van der Waals interactions. J. Chem. Phys. 134, 024516 (2011)

    Article  ADS  Google Scholar 

  39. Weeks, J.D.: Connecting local structure to interface formation: a molecular scale van der Waals theory of nonuniform liquids. Annu. Rev. Phys. Chem. 53, 533–562 (2002)

    Article  ADS  Google Scholar 

  40. Weeks, J.D., Chandler, D., Andersen, H.C.: Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971)

    Article  ADS  Google Scholar 

  41. Widom, B.: Intermolecular forces and the nature of the liquid state. Science 157, 375–382 (1967)

    Article  ADS  Google Scholar 

  42. Xu, L., Buldyrev, S.V., Angell, C.A., Stanley, H.E.: Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Phys. Rev. E 74, 031108 (2006)

    Article  ADS  Google Scholar 

  43. Yan, Z., Buldyrev, S.V., Giovambattista, N., Stanley, H.E.: Structural order for one-scale and two-scale potentials. Phys. Rev. Lett. 95, 130604 (2005)

    Article  ADS  Google Scholar 

  44. Yeh, I.C., Berkowitz, M.L.: Ewald summation for systems with slab geometry. J. Chem. Phys. 111, 3155–3162 (1999)

    Article  ADS  Google Scholar 

  45. Zhu, S.B., Wong, C.F.: Sensitivity analysis of water thermodynamics. J. Chem. Phys. 98, 8892–8899 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Weeks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remsing, R.C., Rodgers, J.M. & Weeks, J.D. Deconstructing Classical Water Models at Interfaces and in Bulk. J Stat Phys 145, 313–334 (2011). https://doi.org/10.1007/s10955-011-0299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0299-3

Keywords

Navigation