Advertisement

Journal of Statistical Physics

, Volume 145, Issue 2, pp 313–334 | Cite as

Deconstructing Classical Water Models at Interfaces and in Bulk

  • Richard C. Remsing
  • Jocelyn M. Rodgers
  • John D. WeeksEmail author
Article

Abstract

Using concepts from perturbation and local molecular field theories of liquids we divide the potential of the SPC/E water model into short and long ranged parts. The short ranged parts define a minimal reference network model that captures very well the structure of the local hydrogen bond network in bulk water while ignoring effects of the remaining long ranged interactions. This deconstruction can provide insight into the different roles that the local hydrogen bond network, dispersion forces, and long ranged dipolar interactions play in determining a variety of properties of SPC/E and related classical models of water. Here we focus on the anomalous behavior of the internal pressure and the temperature dependence of the density of bulk water. We further utilize these short ranged models along with local molecular field theory to quantify the influence of these interactions on the structure of hydrophobic interfaces and the crossover from small to large scale hydration behavior. The implications of our findings for theories of hydrophobicity and possible refinements of classical water models are also discussed.

Keywords

Perturbation theory Hydrophobic interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford, New York (1987) zbMATHGoogle Scholar
  2. 2.
    Ashbaugh, H.S.: Entropy crossover from molecular to macroscopic cavity hydration. Chem. Phys. Lett. 477, 109–111 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    Ashbaugh, H.S., Collett, N.J., Hatch, H.W., Staton, J.A.: Assessing the thermodynamic signatures of hydrophobic hydration for several common water models. J. Chem. Phys. 132, 124504 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    Ben-Naim, A., Stillinger, F.H.: Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes. Wiley-Interscience, New York (1972) Google Scholar
  5. 5.
    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNiola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984) ADSCrossRefGoogle Scholar
  6. 6.
    Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987) CrossRefGoogle Scholar
  7. 7.
    Berne, B.J., Weeks, J.D., Zhou, R.: Dewetting and hydrophobic interaction in physical and biological systems. Annu. Rev. Phys. Chem. 60, 85–103 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    Buldyrev, S.V., Kumar, P., Debenedetti, P.G., Rossky, P.J., Stanley, H.E.: Water-like solvation thermodynamics in a spherically symmetric solvent model with two characteristic lengths. Proc. Natl. Acad. Sci. USA 104, 20177–20182 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    Chen, Y.G., Weeks, J.D.: Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions. Proc. Natl. Acad. Sci. USA 103, 7560 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    Chen, Y.G., Kaur, C., Weeks, J.D.: Connecting systems with short and long ranged interactions: local molecular field theory for ionic fluids. J. Phys. Chem. B 108, 19874 (2004) CrossRefGoogle Scholar
  12. 12.
    Denesyuk, N.A., Weeks, J.D.: A new approach for efficient simulation of Coulomb interactions in ionic fluids. J. Chem. Phys. 128, 124109 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    Goharshadi, E.K., Morsali, A., Mansoori, G.A.: A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids. Chem. Phys. 331, 332–338 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    Guillot, B.: A reappraisal of what we have learnt during three decades of computer simulations of water. J. Mol. Liq. 101, 219–260 (2002) CrossRefGoogle Scholar
  15. 15.
    Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids, 3rd edn. Academic Press, New York (2006) Google Scholar
  16. 16.
    Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics, 91st edn. (Internet Version 2011). CRC Press/Taylor and Francis, Boca Raton (2011) Google Scholar
  17. 17.
    Huang, D.M., Chandler, D.: The hydrophobic effect and the influence of solute-solvent attractions. J. Phys. Chem. B 106, 2047–2053 (2002) CrossRefGoogle Scholar
  18. 18.
    Huang, D.M., Geissler, P.L., Chandler, D.: Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105, 6704–6709 (2001) CrossRefGoogle Scholar
  19. 19.
    Iordanov, T.D., Schenter, G.K., Garrett, B.C.: Sensitivity analysis of thermodynamic properties of liquid water: a general approach to improve empirical potentials. J. Phys. Chem. A 110, 762–771 (2006) CrossRefGoogle Scholar
  20. 20.
    Jirsák, J., Nezbeda, I.: Molecular mechanisms underlying the thermodynamics properties of water. J. Mol. Liq. 134, 99–106 (2007) CrossRefGoogle Scholar
  21. 21.
    Kuo, I.-F.W., Mundy, C.J., Eggimann, B.L., McGrath, M.J., Siepmann, J.I., Chen, B., Vieceli, J., Tobias, D.J.: Structure and dynamics of the aqueous liquid-vapor interface: a comprehensive particle-based simulation study. J. Phys. Chem. B 110, 3738–3746 (2006) CrossRefGoogle Scholar
  22. 22.
    Lee, S.H., Rossky, P.J.: A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular dynamics simulation study. J. Chem. Phys. 100, 3334–3345 (1994) ADSCrossRefGoogle Scholar
  23. 23.
    Lee, C.Y., McCammon, J.A., Rossky, P.J.: The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys. 80, 4448–4455 (1984) ADSCrossRefGoogle Scholar
  24. 24.
    Lum, K., Chandler, D., Weeks, J.D.: Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999) CrossRefGoogle Scholar
  25. 25.
    Luzar, A., Chandler, D.: Effect of environment on hydrogen bond dynamics in liquid water. Phys. Rev. Lett. 76, 928–931 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    Marcotte, E., Stillinger, F.H., Torquato, S.: Optimized monotonic convex pair potentials stabilize low-coordinated crystals. Soft Matter 7, 2332–2335 (2011) CrossRefADSGoogle Scholar
  27. 27.
    Remsing, R.C., Rodgers, J.M., Weeks, J.D.: Unpublished Google Scholar
  28. 28.
    Rodgers, J.M., Weeks, J.D.: Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water. Proc. Natl. Acad. Sci. USA 105, 19136 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    Rodgers, J.M., Weeks, J.D.: Local molecular field theory for the treatment of electrostatics. J. Phys., Condens. Matter 20, 494206 (2008) CrossRefGoogle Scholar
  30. 30.
    Rodgers, J.M., Weeks, J.D.: Accurate thermodynamics for short-ranged truncations of Coulomb interactions in site-site molecular models. J. Chem. Phys. 131, 244108 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    Rodgers, J.M., Hu, Z., Weeks, J.D.: On the efficient and accurate short-ranged simulations of uniform polar molecular liquids. Mol. Phys. 109, 1195–1211 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    Schmidt, J., VandeVondele, J., Kuo, I.-F.W., Sebastiani, D., Siepmann, J.I., Hutter, J., Mundy, C.J.: Isobaric-isothermal molecular dynamics simulations utilizing density functional theory: an assessment of the structure and density of water at near-ambient conditions. J. Phys. Chem. B 113, 11959–11964 (2009) CrossRefGoogle Scholar
  33. 33.
    Shah, J.K., Asthagiri, D., Pratt, L.R., Paulaitis, M.E.: Balancing local order and long-ranged interactions in the molecular theory of liquid water. J. Chem. Phys. 127, 144508 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    Smith, W., Yong, C., Rodger, P.: DL_POLY: application to molecular simulation. Mol. Simul. 28, 385–471 (2002) zbMATHCrossRefGoogle Scholar
  35. 35.
    Stillinger, F.H.: Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solution Chem. 2, 141–158 (1973) CrossRefGoogle Scholar
  36. 36.
    Varilly, P., Patel, A.J., Chandler, D.: An improved coarse-grained model of solvation and the hydrophobic effect. J. Chem. Phys. 134, 074109 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    Vega, C., Abascal, J.L.F., Conde, M.M., Aragones, J.L.: What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 141, 251–276 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    Wang, J., Román-Pérez, G., Soler, J.M., Artacho, E., Fernández-Serra, M.-V.: Density, structure, and dynamics of water: the effect of van der Waals interactions. J. Chem. Phys. 134, 024516 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    Weeks, J.D.: Connecting local structure to interface formation: a molecular scale van der Waals theory of nonuniform liquids. Annu. Rev. Phys. Chem. 53, 533–562 (2002) ADSCrossRefGoogle Scholar
  40. 40.
    Weeks, J.D., Chandler, D., Andersen, H.C.: Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5247 (1971) ADSCrossRefGoogle Scholar
  41. 41.
    Widom, B.: Intermolecular forces and the nature of the liquid state. Science 157, 375–382 (1967) ADSCrossRefGoogle Scholar
  42. 42.
    Xu, L., Buldyrev, S.V., Angell, C.A., Stanley, H.E.: Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Phys. Rev. E 74, 031108 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    Yan, Z., Buldyrev, S.V., Giovambattista, N., Stanley, H.E.: Structural order for one-scale and two-scale potentials. Phys. Rev. Lett. 95, 130604 (2005) ADSCrossRefGoogle Scholar
  44. 44.
    Yeh, I.C., Berkowitz, M.L.: Ewald summation for systems with slab geometry. J. Chem. Phys. 111, 3155–3162 (1999) ADSCrossRefGoogle Scholar
  45. 45.
    Zhu, S.B., Wong, C.F.: Sensitivity analysis of water thermodynamics. J. Chem. Phys. 98, 8892–8899 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Richard C. Remsing
    • 1
  • Jocelyn M. Rodgers
    • 2
  • John D. Weeks
    • 3
    Email author
  1. 1.Institute for Physical Science and Technology, Chemical Physics ProgramUniversity of MarylandCollege ParkUSA
  2. 2.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, Chemical Physics ProgramUniversity of MarylandCollege ParkUSA

Personalised recommendations