Skip to main content
Log in

Hagen-Poiseuille Flow Solutions in Grad-Type Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An analysis of the Hagen-Poiseuille flow for a rarefied gas is presented using Grad’s equations and regularized equations in the 13 moment approximation, which provide a correction for the solution in the hydrodynamic regime. Slip boundary conditions are obtained through a simple wall model in which we take into account diffuse and specular wall-particle interactions. From the solution of the regularized equations, we recover as a special case, the velocity profile in Grad’s approximation and also an equivalent expression in the hydrodynamic regime. In addition, other relevant variables are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brodkey, R., Hershey, H.: Transport Phenomena: A Unified Approach. Brodkey Publishing, Columbus (2003)

    Google Scholar 

  2. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  3. Cercignani, C., Sernagiotto, F.: Cylindrical Poiseuille flow of a rarefied gas. Phys. Fluids 9(1), 40–44 (1966). doi:10.1063/1.1761530

    Article  ADS  Google Scholar 

  4. Davis, E., Schweiger, G.: The Airborne Microparticle. Springer, Berlin (2002)

    Book  Google Scholar 

  5. Ferziger, J., Kaper, H.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)

    Google Scholar 

  6. Ferziger, J.H.: Flow of a rarefied gas through a cylindrical tube. Phys. Fluids 10(7), 1448–1453 (1967). doi:10.1063/1.1762304

    Article  MATH  ADS  Google Scholar 

  7. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (2007). doi:10.1002/cpa.3160020403

    Article  MathSciNet  Google Scholar 

  8. Loyalka, S.K.: Kinetic theory of thermal transpiration and mechanocaloric effect. II. J. Chem. Phys. 63(9), 4054–4060 (1975). doi:10.1063/1.431847

    Article  ADS  Google Scholar 

  9. Loyalka, S.K., Hamoodi, S.A.: Poiseuille flow of a rarefied gas in a cylindrical tube: Solution of linearized Boltzmann equation. Phys. Fluids A, Fluid Dyn. 2(11), 2061–2065 (1990). doi:10.1063/1.857681. http://link.aip.org/link/?PFA/2/2061/1

    Article  MATH  ADS  Google Scholar 

  10. Mortensen, N.A., Bruus, H.: Universal dynamics in the onset of a Hagen-Poiseuille flow. Phys. Rev. E 74(1), 017301 (2006). doi:10.1103/PhysRevE.74.017301

    Article  ADS  Google Scholar 

  11. Niven, E.W.: The Scientific Papers of James Clerk Maxwell on Stresses in Rarified Gases Arising from Inequalities of Temperature. Dover, New York (1965)

    Google Scholar 

  12. Shah, R.K., London, A.L.: Laminar Flow Forced Convection in Ducts. Academic Press, New York (1978)

    Google Scholar 

  13. Shen, C.: Rarefied Gas Dynamics. Fundamentals, Simulations and Micro Flows. Springer, Berlin (2005)

    Book  Google Scholar 

  14. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows. Approximation Methods in Kinetic Theory. Springer, Berlin (2005)

    MATH  Google Scholar 

  15. Struchtrup, H., Torrilhon, M.: Regularization of grad’s 13 moment equations: Derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003). doi:10.1063/1.1597472

    Article  MathSciNet  ADS  Google Scholar 

  16. Thatcher, T., Zheng, Y., Struchtrup, H.: Boundary conditions for grads 13 moment equations. Prog. Comput. Fluid Dyn. 8(15), 69–83 (2008). doi:10.1504/PCFD.2008.018080

    Article  MATH  MathSciNet  Google Scholar 

  17. Valougeorgis, D., Thomas, J.R.: Exact numerical results for Poiseuille and thermal creep flow in a cylindrical tube. Phys. Fluids 29(2), 423–429 (1986). doi:10.1063/1.865725

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Wang, H., Wang, Y.: Influence of three-dimensional wall roughness on the laminar flow in microtube. Int. J. Heat Fluid Flow 28(2), 220–228 (2007). doi:10.1016/j.ijheatfluidflow.2006.08.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, M.A. Hagen-Poiseuille Flow Solutions in Grad-Type Equations. J Stat Phys 142, 710–725 (2011). https://doi.org/10.1007/s10955-011-0142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0142-x

Keywords

Navigation