Skip to main content
Log in

Power-Law Behavior in Geometric Characteristics of Full Binary Trees

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Natural river networks exhibit regular scaling laws in their topological organization. Here, we investigate whether these scaling laws are unique characteristics of river networks or can be applicable to general binary tree networks. We generate numerous binary trees, ranging from purely ordered trees to completely random trees. For each generated binary tree, we analyze whether the tree exhibits any scaling property found in river networks, i.e., the power-laws in the size distribution, the length distribution, the distance-load relationship, and the power spectrum of width function. We found that partially random trees generated on the basis of two distinct types of deterministic trees, i.e., deterministic critical and supercritical trees, show contrasting characteristics. Partially random trees generated on the basis of deterministic critical trees exhibit all power-law characteristics investigated in this study with their fitted exponents close to the values observed in natural river networks over a wide range of random-degree. On the other hand, partially random trees generated on the basis of deterministic supercritical trees rarely follow scaling laws of river networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burlando, B.: The fractal dimension of taxonomic systems. Journal of Theoretical Biology 146(1), 99–114 (1990)

    Article  Google Scholar 

  2. Cardy, J.L., Sugar, R.L.: Directed percolation and Reggeon field theory. Journal of Physics A 13(12), L423 (1980). doi:10.1088/0305-4470/13/12/002

    Article  MathSciNet  ADS  Google Scholar 

  3. Crave, A., Davy, P.: Scaling relationships of channel networks at large scales: examples from two large-magnitude watersheds in Brittany, France. Tectonophysics 269, 91–111 (1997)

    Article  ADS  Google Scholar 

  4. De Los Rios, P.: Power law size distribution of supercritical random trees. Europhysics Letters 56, 898–903 (2001)

    Article  ADS  Google Scholar 

  5. Dodds, P.S., Rothman, D.H.: Geometry of river networks: 1. Scaling, fluctuations, and deviations. Physical Review E 63, 016115 (2001)

    Article  ADS  Google Scholar 

  6. Goh, K.-I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Physical Review Letters 87, 278701 (2001)

    Article  ADS  Google Scholar 

  7. Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Physical Review E 68, 065103(R) (2003)

    Article  ADS  Google Scholar 

  8. Gupta, V.K., Waymire, E.: On the formulation of an analytical approach to hydrologic response and similarity at the basin scale. Journal of Hydrology 65(1–3), 95–123 (1983)

    Article  ADS  Google Scholar 

  9. Hack, J.T.: Studies of longitudinal stream profiles in Virginia and Maryland. US Geological Survey Professional Paper, 294B (1957)

  10. Horton, R.E.: Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56, 275–370 (1945)

    Article  Google Scholar 

  11. Jun, J.K., Hübler, A.H.: Formation and structure of ramified charge transportation networks in an electromechanical system. Proceedings of the National Academy of Sciences (USA) 102(3), 536–540 (2005)

    Article  ADS  Google Scholar 

  12. Kirchner, J.W.: Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993)

    Article  MATH  ADS  Google Scholar 

  13. Liao, K.H., Scheidegger, A.E.: A computer model for some branching-type phenomena in hydrology. Bulletin of the International Association of Scientific Hydrology 13, 5–13 (1968)

    Article  Google Scholar 

  14. Mandelbrot, B.B.: The Fractal Geometry of Nature, Freeman, New York (1982). pp. 480

    MATH  Google Scholar 

  15. Marani, M., Rinaldo, A., Rigon, R., Rodríguez-Iturbe, I.: Geomorphological width functions and the random cascade. Geophysical Research Letters 21, 2123–2126 (1994)

    Article  ADS  Google Scholar 

  16. Maritan, A., Rinaldo, A., Rigon, R., Giacometti, A., Rodríguez-Iturbe, I.: Scaling laws for river networks. Physical Review E 53(2), 1510–1515 (1996)

    Article  ADS  Google Scholar 

  17. Merté, B., Gaitzsch, P., Fritzenwanger, M., Kropf, W., Hübler, A., Lüscher, E.: Stable stationary dendritic patterns with minimal dissipation. Helvetica Phys. Acta 61, 76–79 (1988)

    Google Scholar 

  18. Niemeyer, L., Pietronero, L., Wiesmann, H.J.: Fractal dimension of dielectric breakdown. Physical Review Letters 52, 1033–1036 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  19. Paik, K., Kumar, P.: Inevitable self-similar topology of binary trees and their diverse hierarchical density. The European Physical Journal B 60, 247–258 (2007). doi:10.1140/epjb/e2007-00332-y

    Article  MATH  ADS  Google Scholar 

  20. Paik, K., Kumar, P.: Emergence of self-similar tree network organization. Complexity 13(4), 30–37 (2008). doi:10.1002/cplx.20214

    Article  ADS  Google Scholar 

  21. Peckham, S.D., Gupta, V.K.: A reformulation of Horton’s laws for large river networks in terms of statistical self-similarity. Water Resources Research 35(9), 2763–2777 (1999)

    Article  ADS  Google Scholar 

  22. Rigon, R., Rodríguez-Iturbe, I., Maritan, A., Giacometti, A., Tarboton, D.G., Rinaldo, A.: On Hack’s law. Water Resources Research 32, 3367–3374 (1996)

    Article  ADS  Google Scholar 

  23. Rodríguez-Iturbe, I., Ijjasz-Vásquez, E.J., Bras, R.L., Tarboton, D.G.: Power law distributions of discharge mass and energy in river basins. Water Resources Research 28, 1089–1093 (1992)

    Article  ADS  Google Scholar 

  24. Troutman, B.M., Karlinger, M.R.: On the expected width function for topologically random channel networks. Journal of Applied Probability 21(4), 836–849 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Turcotte, D.L., Pelletier, J.D., Newman, W.I.: Networks with side branching in biology. Journal of Theoretical Biology 193, 577–592 (1998)

    Article  Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature (London) 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  27. Werner, C., Smart, J.S.: Some new methods of topologic classification of channel networks. Geographical Analysis 5, 271–295 (1973)

    Article  Google Scholar 

  28. Zamir, M.: On fractal properties of arterial trees. Journal of Theoretical Biology 197, 517–526 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungrock Paik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paik, K., Kumar, P. Power-Law Behavior in Geometric Characteristics of Full Binary Trees. J Stat Phys 142, 862–878 (2011). https://doi.org/10.1007/s10955-011-0125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0125-y

Keywords

Navigation