Skip to main content
Log in

Nonequilibrium Steady States for Certain Hamiltonian Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We report the results of a numerical study of nonequilibrium steady states for a class of Hamiltonian models. In these models of coupled matter-energy transport, particles exchange energy through collisions with pinned-down rotating disks. In Commun. Math. Phys. 262, 237–267, 2006, Eckmann and Young studied 1D chains and showed that certain simple formulas give excellent approximations of energy and particle density profiles. Keeping the basic mode of interaction in Commun. Math. Phys. 262, 237–267, 2006, we extend their prediction scheme to a number of new settings: 2D systems on different lattices, driven by a variety of boundary (heat bath) conditions including the use of thermostats. Particle-conserving models of the same type are shown to behave similarly. The second half of this paper examines memory and finite-size effects, which appear to impact only minimally the profiles of the models tested in Commun. Math. Phys. 262, 237–267, 2006. We demonstrate that these effects can be significant or insignificant depending on the local geometry. Dynamical mechanisms are proposed, and in the case of directional bias in particle trajectories due to memory, correction schemes are derived and shown to give accurate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balint, P., Lin, K.K., Young, L.-S.: Ergodicity and energy distributions for some boundary driven integrable Hamiltonian chains. Commun. Math. Phys. 294, 199–228 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Stochastic interacting particle systems out of equilibrium. J. Stat. Mech., Theory Exp. P07014 (2007)

  3. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 107, 635–675 (2002)

    Article  MATH  Google Scholar 

  4. Bertini, L., Gabrielli, D., Lebowitz, J.L.: Large deviations for a stochastic model of heat flow. J. Stat. Phys. 121, 843–885 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bonetto, F., Lebowitz, J., Rey-Bellet, L.: Fourier law: a challenge to theorists. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000. Imp. Coll. Press, London (2000)

    Google Scholar 

  6. Bonetto, F., Lebowitz, J.L., Lukkarinen, J., Olla, S.: Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs. J. Stat. Phys. 134, 1097–1119 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Bricmont, J., Kupiainen, A.: Towards a derivation of Fourier’s law for coupled anharmonic oscillators. Commun. Math. Phys. 274, 555–626 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Chernov, N.I., Eyink, G.L., Lebowitz, J.L., Sinai, Ya.G.: Steady-state electrical conduction in the periodic Lorentz gas. Commun. Math. Phys. 154, 569–601 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Collet, P., Eckmann, J.-P.: A model of heat conduction. Commun. Math. Phys. 287, 1015–1038 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. Collet, P., Eckmann, J.-P., Mejía-Monasterio, C.: Superdiffusive heat transport in a class of deterministic one-dimensional many-particle Lorentz gases. J. Stat. Phys. 136, 331–347 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    Google Scholar 

  12. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. P07023 (2007)

  13. Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107, 599–634 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eckmann, J.-P., Hairer, M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212, 105–164 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Eckmann, J.-P., Jacquet, P.: Controllability for chains of dynamical scatterers. Nonlinearity 20, 1601–1617 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Eckmann, J.-P., Young, L.-S.: Nonequilibrium energy profiles for a class of 1-D models. Commun. Math. Phys. 262, 237–267 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Eckmann, J.-P., Mejía-Monasterio, C., Zabey, E.: Memory effects in nonequilibrium transport for deterministic Hamiltonian systems. J. Stat. Phys. 123, 1339–1360 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium Liquids. Academic Press, New York (1990)

    MATH  Google Scholar 

  19. Gallavotti, G.: On thermostats: isokinetic or Hamiltonian? Finite or infinite? Chaos 19, 013101 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Gallavotti, G., Presutti, E.: Thermodynamic limit for isokinetic thermostats. arXiv:0908.3060v1 (2009)

  22. Gaspard, P., Gilbert, T.: Heat conduction and Fourier’s law in a class of many particle dispersing billiards. New J. Phys. 10, 103004 (2008)

    Article  ADS  Google Scholar 

  23. Hairer, M., Mattingly, J.C.: Slow energy dissipation in systems of anharmonic oscillators. Commun. Pure Appl. Math. 62, 999–1032 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hoover, W.G.: Computational Statistical Mechanics. Elsevier, Amsterdam (1991)

    Google Scholar 

  25. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    MATH  Google Scholar 

  26. Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27, 65–74 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  27. Larralde, H., Leyvraz, F., Mejía-Monasterio, C.: Transport properties of a modified Lorentz gas. J. Stat. Phys. 113, 197–231 (2003)

    Article  MATH  Google Scholar 

  28. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377 (2003)

  30. Lepri, S., Mejía-Monasterio, C., Politi, A.: A stochastic model of anomalous heat transport: analytical solution of the nonequilibrium steady state. J. Phys. A, Math. Theor. 42, 025001 (2009)

    Article  ADS  Google Scholar 

  31. Li, B., Casati, G., Wang, J., Prosen, T.: Fourier Law in the alternate-mass hard-core potential chain. Phys. Rev. Lett. 92, 254301 (2004)

    Article  ADS  Google Scholar 

  32. Lin, K.K., Young, L.-S.: Correlations in nonequilibrium steady-states of random-halves models. J. Stat. Phys. 128, 607–639 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Mejía-Monasterio, C., Rondoni, L.: On the fluctuation relation for Nosé-Hoover boundary thermostated systems. J. Stat. Phys. 133 (2008)

  34. Olla, S., Varadhan, S.R.S., Yau, H.T.: Hydrodynamical limit for a Hamiltonian system with weak noise. Commun. Math. Phys. 155, 523–560 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Rateitschak, K., Klages, R., Nicolis, G.: Thermostating by deterministic scattering: the periodic Lorentz gas. J. Stat. Phys. 99, 1339–1364 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ravishankar, K., Young, L.-S.: Local thermodynamic equilibrium for some stochastic models of Hamiltonian origin. J Stat. Phys. 128, 641–665 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Rey-Bellet, L.: Nonequilibrium statistical mechanics of open classical systems. In: XIVth International Conference on Mathematical Physics. World Scientific, Singapore (2006)

    Google Scholar 

  38. Rey-Bellet, L., Thomas, L.E.: Asymptotic behavior of thermal non-equilibrium steady states for a driven chain of anharmonic oscillators. Commun. Math. Phys. 215, 1–24 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Ruelle, D.: Positivity of entropy production in the presence of a random thermostat. J. Stat. Phys. 86, 935–951 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Ruelle, D.: Nonequilibrium statistical mechanics and entropy production in a classical infinite system of rotators. Commun. Math. Phys. 270, 233–265 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Ruelle, D.: What physical quantities make sense in nonequilibrium statistical mechanics? In: Gallavotti, G., Reiter, W.L., Yngvason, J. (eds.) Boltzmann’s Legacy, pp. 89–97. European Mathematical Society, Zürich (2008)

    Chapter  Google Scholar 

  42. Ruelle, D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Spohn, H.: Long range correlations for stochastic lattice gases in a nonequilibrium steady state. J. Phys. A 16, 4275–4291 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  44. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Sang Young.

Additional information

K.L. was supported in part by NSF Grant DMS-0907927.

L.S.Y. was supported in part by NSF Grant DMS-0600974.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, K.K., Young, LS. Nonequilibrium Steady States for Certain Hamiltonian Models. J Stat Phys 139, 630–657 (2010). https://doi.org/10.1007/s10955-010-9958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9958-z

Keywords

Navigation