Skip to main content
Log in

On the Cauchy Problem of the Vlasov-Poisson-BGK System: Global Existence of Weak Solutions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Global-in-time existence of weak solutions to the Cauchy problem of the three dimensional Vlasov-Poisson-BGK system is shown for initial data belonging to the space L p(ℝ3×ℝ3) with p>9 and having finite second order velocity moments. This result solves partially the well-posed problem for the Vlasov-Poisson-BGK system proposed by B. Perthame: “Higher moments for kinetic equations: the Vlasov-Poisson and Fokker-Planck cases,” Math. Meth. Appl. Sci. 13:441–452, 1990.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréasson, H.: Global existence of smooth solutions in three dimensions for the semiconductor Vlasov-Poisson-Boltzmann equation. Nonlinear Anal. 28, 1193–1211 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bardos, C., Degond, P.: Global existence for the Vlasov-Poisson system in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 101–118 (1985)

    MATH  MathSciNet  Google Scholar 

  3. Batt, J.: Global symmetric solutions of the initial value problem in stellar dynamics. J. Differ. Equ. 25, 342–364 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Batt, J., Rein, G.: Global class solutions of the periodic Vlasov-Poisson system in three dimensions. C. R. Acad. Sci. Paris 313, 411–416 (1991)

    MATH  MathSciNet  Google Scholar 

  5. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Phys. Rev. 94, 511–514 (1954)

    Article  MATH  ADS  Google Scholar 

  6. Cercignani, C.: Mathematical Methods in Kinetic Theory. Plenum, New York (1990)

    MATH  Google Scholar 

  7. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    MATH  Google Scholar 

  8. Desvillettes, L., Dolbeault, J.: On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Commun. Partial Differ. Equ. 16, 451–489 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Diperna, R.J., Lions, P.L.: Solutions globales d’équations du type Vlasov-Poisson. C. R. Acad. Sci. Paris Sér. I Math. 307, 655–658 (1988)

    MATH  MathSciNet  Google Scholar 

  10. Diperna, R.J., Lions, P.L.: Global weak solutions of Vlasov-Maxwell system. Commun. Pure Appl. Math. XLII, 729–757 (1989)

    Article  MathSciNet  Google Scholar 

  11. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  12. Guo, Y.: The Vlasov-Poisson-Boltzmann system near vacuum. Commun. Math. Phys. 218, 293–313 (2001)

    Article  MATH  ADS  Google Scholar 

  13. Guo, Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians. Invent. Math. 153, 593–630 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. I General theory. Math. Meth. Appl. Sci. 3, 229–248 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation II. Math. Meth. Appl. Sci. 4, 19–32 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Horst, E., Hunze, R.: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Meth. Appl. Sci. 6, 262–279 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Illner, R., Rein, G.: Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case. Math. Meth. Appl. Sci. 19, 1409–1413 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lions, P.L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. III. J. Math. Kyoto Univ. 34, 539–584 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Lions, P.L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Mischler, S.: Uniqueness for the BGK-equation in ℝN and rate of convergence for a semi-discrete scheme. Differ. Integr. Equ. 9, 1119–1138 (1996)

    MATH  MathSciNet  Google Scholar 

  22. Mischler, S.: On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 210, 447–466 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Perthame, B.: Global existence to the BGK model of Boltzmann equation. J. Differ. Equ. 82, 191–205 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Perthame, B.: Higher moments for kinetic equations: the Vlasov-Poisson and Fokker-Planck cases. Math. Meth. Appl. Sci. 13, 441–452 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Perthame, B.: Time decay, propagation of low moments and dispersive effects for kinetic equations. Commun. Partial Differ. Equ. 21, 659–686 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  28. Rein, G.: Collisionless Kinetic Equations from Astrophysics—The Vlasov-Poisson System. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 383–476. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  29. Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Partial Differ. Equ. 16, 1313–1335 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, T., Zhao, H.: Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 286, 569–605 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  31. Yang, T., Yu, H., Zhao, H.: Cauchy problem for the Vlasov-Poisson-Boltzmann system. Arch. Ration. Mech. Anal. 182, 415–470 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang, X.: Global weak solutions to the cometary flow equation with a self-generated electric field, preprint

  33. Zhang, X., Hu, S.: L p solutions to the Cauchy problem of the BGK equation. J. Math. Phys. 48, 113304 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X. On the Cauchy Problem of the Vlasov-Poisson-BGK System: Global Existence of Weak Solutions. J Stat Phys 141, 566–588 (2010). https://doi.org/10.1007/s10955-010-0064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0064-z

Keywords

Navigation