Skip to main content
Log in

Cascade Defense via Control of the Fluxes in Complex Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Exploring the possible strategies to defense to prevent the cascade from propagating through the entire network is of both theoretical interest and practical significance, and several strategies of defense have been developed recently. Following the work about the strategy based on the international removal of network elements (Motter in Phys. Rev. Lett. 93:098701, 2004), we propose and investigate three novel strategies of defense by controlling the fluxes. Extensive simulations on both an artificially created scale-free network and the Internet at autonomous system level reveal that these strategies can suppress the propagation of the cascade, even avoid the cascading failure. In addition, a more intuitive and important measure to quantify the damage caused by a cascade is developed and some new features are, thus, clearly displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holme, P., Kim, B.J.: Vertex overload breakdown in evolving networks. Phys. Rev. E 65, 066109 (2002)

    Article  ADS  Google Scholar 

  2. Holme, P.: Edge overload breakdown in evolving networks. Phys. Rev. E 66, 036119 (2002)

    Article  ADS  Google Scholar 

  3. Motter, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102(R) (2002)

    ADS  Google Scholar 

  4. Moreno, Y., Gómez, J.B., Pacheco, A.F.: Instability of scale-free networks under node-breaking avalanches. Europhys. Lett. 58, 630–636 (2002)

    Article  ADS  Google Scholar 

  5. Sachtjen, M.L., Carreras, B.A., Lynch, V.E.: Disturbances in a power transmission system. Phys. Rev. E 61, 4877–4882 (2000)

    Article  ADS  Google Scholar 

  6. Jacobson, V.: Congestion avoidance and control. Comput. Commun. Rev. 18, 314–329 (1988)

    Article  Google Scholar 

  7. Guimerà, R., Arenas, A., Díaz-Guilera, A., Giralt, F.: Dynamical properties of model communication networks. Phys. Rev. E 66, 026704 (2002)

    Article  ADS  Google Scholar 

  8. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  9. Carreras, B.A., Lynch, V.E., Dobson, I., Newman, D.E.: Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos 12(4), 985–994 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99, 5766–5771 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Zhao, L., Park, K., Lai, Y.-C.: Attack vulnerability of scale-free networks due to cascading breakdown. Phys. Rev. E 70, 035101(R) (2004)

    ADS  Google Scholar 

  12. Zhao, L., Park, K., Lai, Y.-C., Ye, N.: Tolerance of scale-free networks against attack-induced cascades. Phys. Rev. E 72, 025104(R) (2005)

    ADS  Google Scholar 

  13. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the North American power grid. Eur. Phys. J. B 46, 101–107 (2005)

    Article  ADS  Google Scholar 

  14. Kim, D.-H., Motter, A.E.: Fluctuation-driven capacity distribution in complex networks. New J. Phys. 10, 053022 (2008)

    Article  ADS  Google Scholar 

  15. Simonsen, I., Buzna, L., Peters, K., Bornholdt, S., Helbing, D.: Transient dynamics increasing network vulnerability to cascading failures. Phys. Rev. Lett. 100, 218701 (2008)

    Article  ADS  Google Scholar 

  16. Heide, D., Schäfer, M., Greiner, M.: Robustness of networks against fluctuation-induced cascading failures. Phys. Rev. E 77, 056103 (2008)

    Article  ADS  Google Scholar 

  17. Wang, B., Kim, B.J.: A high-robustness and low-cost model for cascading failures. Europhys. Lett. 78, 48001 (2007)

    Article  ADS  Google Scholar 

  18. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104(R) (2004)

    Article  ADS  Google Scholar 

  19. Wang, W.-X., Chen, G.: Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E 77, 026101 (2008)

    Article  ADS  Google Scholar 

  20. Goh, K.-I., Lee, D.-S., Kahng, B., Kim, D.: Sandpile on scale-free networks. Phys. Rev. Lett. 91, 148701 (2003)

    Article  ADS  Google Scholar 

  21. Moreno, Y., Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Critical load and congestion instabilities in scale-free networks. Europhys. Lett. 62, 292–298 (2003)

    Article  ADS  Google Scholar 

  22. Guimerà, R., Díaz-Guilera, R.A., Vega-Redondo, F., Cabrales, A., Arenas, A.: Optimal network topologies for local search with congestion. Phys. Rev. Lett. 89, 248701 (2002)

    Article  ADS  Google Scholar 

  23. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the North American power grid. Phys. Rev. E 69, 025103 (2004)

    Article  ADS  Google Scholar 

  24. Zhao, X.M., Gao, Z.Y.: Topological effects on the performance of transportation networks. Chin. Phys. Lett. 24, 283–286 (2007)

    Article  ADS  Google Scholar 

  25. Wu, J.J., Gao, Z.Y., Sun, H.J., Huang, H.J.: Congestion in different topologies of traffic networks. Europhys. Lett. 74, 560–566 (2006)

    Article  ADS  Google Scholar 

  26. Zheng, J.F., Gao, Z.Y., Zhao, X.M.: Clustering and congestion effects on cascading failures of scale-free networks. Europhys. Lett. 79, 58002 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. Huang, L., Lai, Y.-C., Chen, G.: Understanding and preventing cascading breakdown in complex clustered networks. Phys. Rev. E 78, 036116 (2008)

    Article  ADS  Google Scholar 

  28. Gallos, L.K., Cohen, R., Argyrakis, P., Bunde, A., Havlin, S.: Stability and topology of scale-free networks under attack and defense strategies. Phys. Rev. Lett. 94, 188701 (2005)

    Article  ADS  Google Scholar 

  29. Schäfer, M., Scholz, J., Greiner, M.: Proactive robustness control of heterogeneously loaded networks. Phys. Rev. Lett. 96, 108701 (2006)

    Article  ADS  Google Scholar 

  30. Li, P., Wang, B.-H., Sun, H., Gao, P., Zhou, T.: A limited resource model of fault-tolerant capability against cascading failure of complex network. Eur. Phys. J. B 62, 101–104 (2008)

    Article  ADS  Google Scholar 

  31. Yang, R., Wang, W.-X., Lai, Y.-C., Chen, G.: Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79, 026112 (2009)

    Article  ADS  Google Scholar 

  32. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93, 098701 (2004)

    Article  ADS  Google Scholar 

  33. Anghel, M., Werley, K.A., Motter, A.E.: Stochastic model for power grid dynamics. In: Proceedings of the Fortieth Hawaii International Conference on System Sciences, Big Island, Hawaii, January 3–6, 2007. arXiv:physics/0609217 [physics.soc-ph]

  34. Newth, D., Ash, J.: Evolving cascading failure resilience in complex networks. Complex. Int. 11, 125–136 (2005)

    Google Scholar 

  35. Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  36. Yan, G., Zhou, T., Hu, B., Fu, Z.-Q., Wang, B.-H.: Efficient routing on complex networks. Phys. Rev. E 73, 046108 (2006)

    Article  ADS  Google Scholar 

  37. Zhao, H., Gao, Z.-Y.: Cascade defense via navigation in scale free networks. Eur. Phys. J. B 57, 95–101 (2007)

    Article  ADS  Google Scholar 

  38. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  39. Goh, K.I., Kahng, B., Kim, D.: Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001)

    Article  ADS  Google Scholar 

  40. Newman, M.E.J.: Assortative mixing networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  41. Ohira, T., Sawatari, R.: Phase transition in a computer network traffic model. Phys. Rev. E 58, 193–195 (1998)

    Article  ADS  Google Scholar 

  42. Holme, P.: Congestion and centrality in traffic flow on complex networks. Adv. Complex Syst. 6, 163–176 (2003)

    Article  MATH  Google Scholar 

  43. Cohen, R., Havlin, S., ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, K., Hu, T. & Tang, Y. Cascade Defense via Control of the Fluxes in Complex Networks. J Stat Phys 141, 555–565 (2010). https://doi.org/10.1007/s10955-010-0058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0058-x

Keywords

Navigation