Skip to main content
Log in

Kinetic Theory and Lax Equations for Shock Clustering and Burgers Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study shock statistics in the scalar conservation law t u+ x f(u)=0, x∈ℝ, t>0, with a convex flux f and spatially random initial data. We show that the Markov property (in x) is preserved for a large class of random initial data (Markov processes with downward jumps and derivatives of Lévy processes with downward jumps). The kinetics of shock clustering is then described completely by an evolution equation for the generator of the Markov process u(x,t), x∈ℝ. We present four distinct derivations for this evolution equation, and show that it takes the form of a Lax pair. The Lax equation admits a spectral parameter as in Manakov (Funct. Anal. Appl. 10:328–329, 1976), and has remarkable exact solutions for Burgers equation (f(u)=u 2/2). This suggests the kinetic equations of shock clustering are completely integrable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, vol. 149. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. Government Printing Office, Washington (1964)

    MATH  Google Scholar 

  3. Adler, M., Van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math. 38, 267–317 (1980)

    Article  MATH  Google Scholar 

  4. Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. Math. 38, 318–379 (1980)

    Article  MATH  Google Scholar 

  5. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  6. Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J., Rogers, W.H., Tukey, J.W.: Robust Estimates of Location: Survey and Advances. Princeton University Press, Princeton (1972)

    MATH  Google Scholar 

  7. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  8. Avallaneda, M.W.E.: Statistical properties of shocks in Burgers turbulence. Commun. Math. Phys. 172, 13–38 (1995)

    Article  ADS  Google Scholar 

  9. Bertoin, J.: The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193, 397–406 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Bertoin, J.: Some properties of Burgers turbulence with white or stable noise initial data. In: Lévy Processes, pp. 267–279. Birkhäuser Boston, Boston (2001)

    Chapter  Google Scholar 

  11. Bertoin, J.: Some aspects of additive coalescents. In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 15–23. Higher Education Press, Beijing (2002)

    Google Scholar 

  12. Burgers, J.M.: Correlation problems in a one-dimensional model of turbulence, I. Proc. K. Ned. Akad. Wet. 53, 247–260 (1950)

    MATH  MathSciNet  Google Scholar 

  13. Burgers, J.M.: Correlation problems in a one-dimensional model of turbulence, II. Proc. K. Ned. Akad. Wet. 53, 393–406 (1950)

    MathSciNet  Google Scholar 

  14. Burgers, J.M.: The Nonlinear Diffusion Equation. Dordrecht, Reidel (1974)

    Book  MATH  Google Scholar 

  15. Carraro, L., Duchon, J.: Solutions statistiques intrinsèques de l’équation de Burgers et processus de Lévy. C. R. Acad. Sci. Paris, Sér. I, Math. 319, 855–858 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Carraro, L., Duchon, J.: Équation de Burgers avec conditions initiales à accroissements indépendants et homogènes. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15, 431–458 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Chabanol, M.-L., Duchon, J.: Markovian solutions of inviscid Burgers equation. J. Stat. Phys. 114, 525–534 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Chabanol, M.-L., Duchon, J.: Lévy-process intrinsic statistical solutions of a randomly forced Burgers equation. J. Stat. Phys. 136, 1095–1104 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Chernoff, H.: Estimation of the mode. Ann. Inst. Stat. Math. 16, 31–41 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, New York (2000)

    Book  MATH  Google Scholar 

  21. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. Rev. Mod. Phys. 3, 1191–1198 (1962)

    MATH  MathSciNet  Google Scholar 

  22. Vanden Eijnden, E.: Statistical theory for the stochastic Burgers equation in the inviscid limit. Commun. Pure Appl. Math. 53, 852–901 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Frachebourg, L., Martin, P.A.: Exact statistical properties of the Burgers equation. J. Fluid Mech. 417, 323–349 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Frachebourg, L., Martin, P.A., Piasecki, J.: Ballistic aggregation: a solvable model of irreversible many particles dynamics. Phys. A, Stat. Mech. Appl. 279, 69–99 (2000)

    Article  Google Scholar 

  25. Getoor, R.K.: Splitting times and shift functionals. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47, 69–81 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Groeneboom, P.: Brownian motion with a parabolic drift and Airy functions. Probab. Theory Relat. Fields 81, 79–109 (1989)

    Article  MathSciNet  Google Scholar 

  27. Hopf, E.: The partial differential equation u t +uu x =μ xx . Commun. Pure Appl. Math. 3, 201–230 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hopf, E.: Statistical hydromechanics and functional calculus. J. Ration. Mech. Anal. 1, 87–123 (1952)

    MATH  MathSciNet  Google Scholar 

  29. Kerov, S.V.: Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis. Translations of Mathematical Monographs, vol. 219. American Mathematical Society, Providence (2003). Translated from the Russian manuscript by N.V. Tsilevich, with a foreword by A. Vershik and comments by G. Olshanski

    Google Scholar 

  30. Kida, S.: Asymptotic properties of Burgers turbulence. J. Fluid Mech. 93, 337–377 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Kim, J., Pollard, D.: Cube root asymptotics. Ann. Stat. 18, 191–219 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lax, P.D.: Hyperbolic systems of conservation laws. II. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, vol. 11. Society for Industrial and Applied Mathematics, Philadelphia (1973)

    Book  MATH  Google Scholar 

  34. Lax, P.D.: Functional Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2002)

    Google Scholar 

  35. Manakov, S.: Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body. Funct. Anal. Appl. 10, 328–329 (1976)

    Article  MathSciNet  Google Scholar 

  36. Mattingly, J.C., McKinley, S.A.: Shell models of turbulence (2009, work in progress)

  37. Mattingly, J.C., Suidan, T., Vanden-Eijnden, E.: Simple systems with anomalous dissipation and energy cascade. Commun. Math. Phys. 276, 189–220 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Menon, G., Pego, R.L.: Universality classes in Burgers turbulence. Commun. Math. Phys. 273, 177–202 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Meyer, P.A., Smythe, R.T., Walsh, J.B.: Birth and death of Markov processes. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability University of California, Berkeley, CA, 1970/1971. Probability Theory, vol. III, pp. 295–305. University California Press, Berkeley (1972)

  40. She, Z.-S., Aurell, E., Frisch, U.: The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys. 148, 623–641 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Stroock, D.W.: Markov Processes from K. Itô’s Perspective. Annals of Mathematics Studies, vol. 155. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  42. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Vol’pert, A.I.: Spaces BV and quasilinear equations. Mat. Sb. (N.S.) 73(115), 255–302 (1967)

    MathSciNet  Google Scholar 

  44. von Neumann, J.: In: Taub, A.H. (ed.) Collected Works. Theory of Games, Astrophysics, Hydrodynamics and Meteorology, vol. VI. Pergamon/Macmillan, New York (1963)

    Google Scholar 

  45. Winkel, M.: Limit clusters in the inviscid Burgers turbulence with certain random initial velocities. J. Stat. Phys. 107, 893–917 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Woyczyński, W.A.: Burgers-KPZ Turbulence. Lecture Notes in Mathematics, vol. 1700. Springer, Berlin (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menon, G., Srinivasan, R. Kinetic Theory and Lax Equations for Shock Clustering and Burgers Turbulence. J Stat Phys 140, 1195–1223 (2010). https://doi.org/10.1007/s10955-010-0028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0028-3

Keywords

Navigation