Skip to main content
Log in

Finite Size Effects and Metastability in Zero-Range Condensation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study zero-range processes which are known to exhibit a condensation transition, where above a critical density a non-zero fraction of all particles accumulates on a single lattice site. This phenomenon has been a subject of recent research interest and is well understood in the thermodynamic limit. The system shows large finite size effects, and we observe a switching between metastable fluid and condensed phases close to the critical point, in contrast to the continuous limiting behaviour of relevant observables. We describe the leading order finite size effects and establish a discontinuity near criticality in a rigorous scaling limit. We also characterise the metastable phases using a current matching argument and an extension of the fluid phase to supercritical densities. This constitutes an interesting example where the thermodynamic limit fails to capture essential parts of the dynamics, which are particularly relevant in applications with moderate system sizes such as traffic flow or granular clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andjel, E.D.: Invariant measures for the zero range process. Ann. Probab. 10(3), 525–547 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angel, A.G., Evans, M.R., Mukamel, D.: Condensation transitions in a one-dimensional zero-range process with a single defect site. J. Stat. Mech. 4, 04001 (2004)

    Article  Google Scholar 

  3. Armendáriz, I., Grosskinsky, S., Loulakis, M.: Zero range condensation at criticality (2009). arXiv:0912.1793v1 [math.PR]

  4. Armendáriz, I., Loulakis, M.: Thermodynamic limit for the invariant measures in supercritical zero range processes. Probab. Theory Relat. Fields 145(1), 175–188 (2009)

    Article  MATH  Google Scholar 

  5. Behringer, H., Pleimling, M.: Continuous phase transitions with a convex dip in the microcanonical entropy. Phys. Rev. E 74(1), 011108 (2006)

    Article  ADS  Google Scholar 

  6. Beltrán, J., Landim, C.: Meta-stability and condensed zero-range processes on finite sets (2008). arXiv:0802.2171 [math.PR]

  7. Beltrán, J., Landim, C.: Metastability of reversible condensed zero range processes on a finite set (2009). arXiv:0910.4089v1 [math.PR]

  8. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains (2009). arXiv:0910.4088v1 [math.PR]

  9. Biskup, M., Chayes, L., Kotecký, R.: On the formation/dissolution of equilibrium droplets. Europhys. Lett. 60(1), 21 (2002)

    Article  ADS  Google Scholar 

  10. Biskup, M., Chayes, L., Kotecký, R.: Critical region for droplet formation in the two-dimensional Ising model. Commun. Math. Phys. 242(1), 137–183 (2003)

    MATH  ADS  Google Scholar 

  11. Davis, B., McDonald, D.: An elementary proof of the local central limit theorem. J. Theor. Probab. 8(3), 693–701 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1), 42–57 (2000)

    Article  Google Scholar 

  13. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A, Math. Gen. 38(19), R195–R240 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Evans, M.R., Majumdar, S.N.: Condensation and extreme value statistics. J. Stat. Mech., Theory Exp. 2008(05), P05004 (2008)

    Article  Google Scholar 

  15. Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Canonical analysis of condensation in factorised steady states. J. Stat. Phys. 123(2), 357–390 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Ferrari, P.A., Landim, C., Sisko, V.V.: Condensation for a fixed number of independent random variables. J. Stat. Phys. 128(5), 1153–1158 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Godreche, C.: Dynamics of condensation in zero-range processes. J. Phys. A, Math. Gen. 36(23), 6313–6328 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Godreche, C., Luck, J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A, Math. Gen. 38(33), 7215–7237 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. Grosskinsky, S.: Equivalence of ensembles for two-species zero-range invariant measures. Stoch. Process. Appl. 118(8), 1322–1350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grosskinsky, S., Schütz, G.M.: Discontinuous condensation transition and nonequivalence of ensembles in a zero-range process. J. Stat. Phys. 132(1), 77–108 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Grosskinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: Stationary and dynamical properties. J. Stat. Phys. 113(3), 389–410 (2003)

    Article  MATH  Google Scholar 

  22. Gupta, S., Barma, M., Majumdar, S.N.: Finite-size effects on the dynamics of the zero-range process. Phys. Rev. E 76, 4 (2007)

    MathSciNet  Google Scholar 

  23. Hirschberg, O., Mukamel, D., Schütz, G.M.: Condensation in temporally correlated zero-range dynamics. Phys. Rev. Lett. 103(9), 090602 (2009)

    Article  ADS  Google Scholar 

  24. Holley, R.: A class of interactions in an infinite particle system. Adv. Math. 5(2), 291–309 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hüller, A.: Finite size scaling at first order phase transition? Z. Phys. B, Condens. Matter 95, 63–66 (1994)

    Article  ADS  Google Scholar 

  26. Jeon, I., March, P., Pittel, B.: Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28(3), 1162–1194 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kafri, Y., Levine, E., Mukamel, D., Schütz, G.M., Török, J.: Criterion for phase separation in one-dimensional driven systems. Phys. Rev. Lett. 89(3), 035702 (2002)

    Article  ADS  Google Scholar 

  28. Kaupuzs, J., Mahnke, R., Harris, R.J.: Zero-range model of traffic flow. Phys. Rev. E 72(5, Part 2), 5 (2005)

    Google Scholar 

  29. Kim, S.W., Lee, J., Noh, J.D.: Particle condensation in pair exclusion process (2010). arXiv:1001.3563v1 [cond-mat.stat-mech]

  30. Levine, E., Ziv, G., Gray, L., Mukamel, D.: Traffic jams and ordering far from thermal equilibrium. Physica A 340, 636–646 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  31. Liggett, T., Spitzer, F.: Ergodic theorems for coupled random walks and other systems with locally interacting components. Probab. Theory Relat. Fields 56(4), 443–468 (1981)

    MATH  MathSciNet  Google Scholar 

  32. Majumdar, S.N., Evans, M.R., Zia, R.K.P.: Nature of the condensate in mass transport models. Phys. Rev. Lett. 94(18), 180601 (2005)

    Article  ADS  Google Scholar 

  33. Murthy, K.P.N., Kehr, K.W.: Mean first-passage time of random walks on a random lattice. Phys. Rev. A 40(4), 2082–2087 (1989)

    Article  ADS  Google Scholar 

  34. Schwarzkopf, Y., Evans, M.R., Mukamel, D.: Zero-range processes with multiple condensates: statics and dynamics. J. Phys. A, Math. Theor. 41(20), 205001 (2008) (21pp)

    Article  MathSciNet  ADS  Google Scholar 

  35. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5(246–290), 2 (1970)

    MathSciNet  Google Scholar 

  36. Thompson, A.G., Tailleur, J., Cates, M.E., Blythe, R.A.: Zero-range processes with saturated condensation: the steady state and dynamics. J. Stat. Mech., Theory Exp. 2010(02), P02013 (2010)

    Article  Google Scholar 

  37. Török, J.: Analytic study of clustering in shaken granular material using zero-range processes. Physica A 355(2–4), 374–382 (2005)

    Article  ADS  Google Scholar 

  38. van der Meer, D., van der Weele, K., Lohse, D.: Sudden collapse of a granular cluster. Phys. Rev. Lett. 88(17), 174302 (2002)

    Article  ADS  Google Scholar 

  39. van der Meer, D., van der Weele, K., Reimann, P., Lohse, D.: Compartmentalized granular gases: flux model results. J. Stat. Mech. 07, P07021 (2007)

    Article  Google Scholar 

  40. van der Weele, K., van der Meer, D., Versluis, M., Lohse, D.: Hysteretic clustering in granular gas. Europhys. Lett. 53(3), 328–334 (2001)

    Article  ADS  Google Scholar 

  41. Wilson, R.E.: Mechanisms for spatio-temporal pattern formation in highway traffic models. Philos. Trans. R. Soc. A 366(1872), 2017–2032 (2008)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Chleboun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chleboun, P., Grosskinsky, S. Finite Size Effects and Metastability in Zero-Range Condensation. J Stat Phys 140, 846–872 (2010). https://doi.org/10.1007/s10955-010-0017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0017-6

Keywords

Navigation