Skip to main content
Log in

An Ergodic Sampling Scheme for Constrained Hamiltonian Systems with Applications to Molecular Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This article addresses the problem of computing the Gibbs distribution of a Hamiltonian system that is subject to holonomic constraints. In doing so, we extend recent ideas of Cancès et al. (M2AN 41(2), 351–389, 2007) who could prove a Law of Large Numbers for unconstrained molecular systems with a separable Hamiltonian employing a discrete version of Hamilton’s principle. Studying ergodicity for constrained Hamiltonian systems, we specifically focus on the numerical discretization error: even if the continuous system is perfectly ergodic this property is typically not preserved by the numerical discretization. The discretization error is taken care of by means of a hybrid Monte-Carlo algorithm that allows for sampling bias-free expectation values with respect to the Gibbs measure independently of the (stable) step-size. We give a demonstration of the sampling algorithm by calculating the free energy profile of a small peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenkel, D., Smit, B.: Understanding Molecular Dynamics: From Algorithms to Applications. Academic, London (2002)

    Google Scholar 

  2. Andersen, H.C.: Molecular dynamics simulations at constant temperature and/or pressure. J. Chem. Phys. 71(4), 2384–2393 (1980)

    Article  ADS  Google Scholar 

  3. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)

    Article  ADS  Google Scholar 

  4. Holian, B.L., Hoover, W.G.: Numerical test of the Liouville equation. Phys. Rev. A 34(5), 4229–4239 (1986)

    Article  ADS  Google Scholar 

  5. Martyna, G.J., Klein, M.L., Tuckerman, M.E.: Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97(4), 2635–2643 (1992)

    Article  ADS  Google Scholar 

  6. Evans, D.J., Morriss, G.P.: The isothermal/isobaric molecular dynamics ensemble. Phys. Lett. A 8–9, 433–436 (1983)

    Article  ADS  Google Scholar 

  7. Bond, S.D., Leimkuhler, B.J., Laird, B.B.: The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151, 114–134 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Hünenberger, P.H.: Thermostat algorithms for molecular dynamics simulations. In: Holm, C., Kremer, K. (eds.) Advanced Computer Simulation: Approaches for Soft Matter Sciences I. Advances in Polymer Science, vol. 173, pp. 105–149. Springer, Berlin (2005)

    Google Scholar 

  9. Schütte, C.: Conformational dynamics: modelling, theory, algorithm, and application to biomolecules. Habilitation Thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin (1998)

  10. Cancès, E., Legoll, F., Stoltz, G.: Theoretical and numerical comparison of some sampling methods for molecular dynamics. Math. Model. Numer. Anal. 41(2), 351–389 (2007) (Special Issue on Molecular Modelling)

    Article  MathSciNet  Google Scholar 

  11. Mehlig, B., Heermann, D.W., Forrest, B.M.: Exact Langevin algorithms. Mol. Phys. 76, 1347–1357 (1992)

    Article  MathSciNet  Google Scholar 

  12. Roberts, G.O., Tweedie, R.L.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2(4), 341–363 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101(2), 185–232 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (1999)

    MATH  Google Scholar 

  15. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)

    MATH  Google Scholar 

  16. Bou-Rabee, N., Owahdi, H.: Ergodicity of Langevin processes with degenerate diffusion in momentums. Stoch. Process. Appl. (2007, submitted). Available under arXiv:0710.4259

  17. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  18. Bou-Rabee, N., Owahdi, H.: Stochastic variational partitioned Runge-Kutta integrators for constrained systems. SIAM J. Numer. Anal. (2007, submitted). Available under arXiv:0709.2222

  19. E, W., Vanden-Eijnden, E.: Metastability, conformation dynamics, and transition pathways in complex systems. In: Attinger, S., Koumoutsakos, P. (eds.) Multiscale, Modelling, and Simulation, pp. 35–68. Springer, Berlin (2004)

    Google Scholar 

  20. Chipot, C., Pohorille, A.: Free Energy Calculations. Springer, Berlin (2006)

    Google Scholar 

  21. Kehrbaum, S., Maddocks, J.H.: Elastic rods, rigid bodies, quaternions and the last quadrature. Philos. Trans. R. Soc. Lond. 355, 2117–2136 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Hartmann, C.: Model reduction in classical molecular dynamics. Dissertation Thesis, Freie Universität Berlin (2007). Available via http://www.diss.fu-berlin.de/2007/458

  23. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer, New York (1988)

    MATH  Google Scholar 

  24. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2002)

    MATH  Google Scholar 

  25. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics und Symmetry. Springer, New York (1999)

    Google Scholar 

  26. Ge, Z., Marsden, J.E.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133, 134–139 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  27. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)

    MATH  Google Scholar 

  28. Tienrey, L.: Markov chains for exploring posterior distributions. With discussion and a rejoinder by the author. Ann. Stat. 22(4), 1701–1762 (1994)

    Article  Google Scholar 

  29. Tienrey, L.: Introduction to general state-space Markov chains. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.) Markov Chain Monte-Carlo in Practice, pp. 59–74. Chapman & Hall, London (1997)

    Google Scholar 

  30. Hartmann, C., Schütte, C.: A constrained hybrid Monte-Carlo algorithm and the problem of calculating the free energy in several variables. Z. Angew. Math. Mech. 85(10), 700–710 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 9, 357–514 (2001)

    MathSciNet  Google Scholar 

  32. MacKay, R.: Some aspects of the dynamics of Hamiltonian systems. In: Broomhead, D.S., Iserles, A. (eds.) The Dynamics of Numerics and the Numerics of Dynamics, pp. 137–193. Clarendon, Oxford (1992)

    Google Scholar 

  33. Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  ADS  Google Scholar 

  34. Andersen, H.C.: RATTLE: a “velocity” version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983)

    Article  MATH  ADS  Google Scholar 

  35. Leimkuhler, B., Skeel, R.D.: Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112, 117–125 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  37. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  38. Wendlandt, J.M., Marsden, J.E.: Mechanical integrators derived from a discrete variational principle. Physica D 106, 223–246 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Mehlig, B., Heermann, D.W., Forrest, B.M.: Hybrid Monte Carlo method for condensed-matter systems. Phys. Rev. B 45(2), 679–685 (1992)

    Article  ADS  Google Scholar 

  40. Ciccotti, G., Lelièvre, T., Vanden-Eijnden, E.: Sampling Boltzmann-Gibbs distributions restricted on a manifold with diffusions: application to free energy calculations. Rapport de recherche du CERMICS, 2006-309 (2006)

  41. Barth, E., Kuczera, K., Leimkuhler, B., Skeel, R.D.: Algorithms for constrained molecular dynamics. J. Comput. Chem. 16, 1192–1209 (1995)

    Article  Google Scholar 

  42. Petzold, L., Lötstedt, P.: Numerical solution of nonlinear differential equations with algebraic constraints II: practical implications. SIAM J. Sci. Comput. 7(3), 720–733 (1986)

    Article  MATH  Google Scholar 

  43. Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: holonomic constraints. Comput. Methods Appl. Mech. Eng. 194, 5159–5190 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Betsch, P., Leyendecker, S.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics. Int. J. Numer. Methods Eng. 67, 499–552 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Maddocks, J.H., Pego, R.L.: An unconstrained Hamiltonian formulation for incompressible flows. Commun. Math. Phys. 170, 207–217 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Gonzalez, O., Maddocks, J.H., Pego, R.L.: Multi-multiplier ambient-space formulations of constrained dynamical systems, with an application to elastodynamics. Arch. Ration. Mech. Anal. 157, 285–323 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  47. Leyendecker, S., Betsch, P., Steinmann, P.: Energy-conserving integration of constrained Hamiltonian systems—a comparison of approaches. Comput. Mech. 33, 174–185 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Bornemann, F.A.: Homogenization of Singularly Perturbed Mechanical Systems. Lecture Notes in Mathematics, vol. 1687. Springer, Berlin (1998)

    MATH  Google Scholar 

  49. Kirkwood, J.G.: Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300–313 (1935)

    Article  ADS  Google Scholar 

  50. Hartmann, C., Schütte, C.: Comment on two distinct notions of free energy. Physica D 228, 59–63 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Lindahl, E., Hess, B., van der Spoel, D.: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Mod. 7, 306–317 (2001)

    Google Scholar 

  52. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible and free. J. Comput. Chem. 26, 1701–1718 (2005)

    Article  Google Scholar 

  53. METAMACS—a Java package for simulation and analysis of metastable Markov chains. Available from: http://biocomputing.mi.fu-berlin.de/Metamacs/

  54. den Otter, W.K.: Free energy from molecular dynamics with multiple constraints. Mol. Phys. 98(12), 773–781 (2000)

    Article  ADS  Google Scholar 

  55. Wang, Y., Kuczera, K.: Multidimensional conformational free energy surface exploration: helical states of ala n and aib n peptides. J. Phys. Chem. B 101, 5205–5213 (2000)

    Article  Google Scholar 

  56. Conrad, T.: Berechnung von freie-Energie-Flächen am Beispiel des Alanin-Dipeptides. Bachelor’s Thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin (2003) (in German)

  57. Lau, W.F., Pettitt, B.M.: Conformations of the glycine dipeptide. Biopolymers 26(11), 1817–1831 (1987)

    Article  Google Scholar 

  58. Chorin, A.J., Hald, O.H., Kupferman, R.: Optimal prediction and the Mori-Zwanzig representation of irreversible processes. Proc. Natl. Acad. Sci. USA 97(7), 2969–2973 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  59. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, New York (1984)

    Google Scholar 

  60. Hummer, G., Kevrekidis, I.G.: Coarse molecular dynamics of a peptide fragment: free energy, kinetics, and long-time dynamics computations. J. Chem. Phys. 118, 10762–10773 (2003)

    Article  ADS  Google Scholar 

  61. Kevrekidis, I.G., Gear, C.W., Hummer, G.: Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J. 50(7), 1346–1355 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, C. An Ergodic Sampling Scheme for Constrained Hamiltonian Systems with Applications to Molecular Dynamics. J Stat Phys 130, 687–711 (2008). https://doi.org/10.1007/s10955-007-9470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9470-2

Keywords

Navigation