Skip to main content
Log in

Condensation for a Fixed Number of Independent Random Variables

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A family of m independent identically distributed random variables indexed by a chemical potential φ∈[0,γ] represents piles of particles. As φ increases to γ, the mean number of particles per site converges to a maximal density ρ c <∞. The distribution of particles conditioned on the total number of particles equal to n does not depend on φ (canonical ensemble). For fixed m, as n goes to infinity the canonical ensemble measure behave as follows: removing the site with the maximal number of particles, the distribution of particles in the remaining sites converges to the grand canonical measure with density ρ c ; the remaining particles concentrate (condensate) on a single site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, M.R.: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30(1), 42–47 (2000)

    Article  Google Scholar 

  2. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A 38(19), R195–R240 (2005)

    Article  MATH  ADS  Google Scholar 

  3. Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Factorized steady states in mass transport models. J. Phys. A 37(25), L275–L280 (2004)

    Article  MATH  ADS  Google Scholar 

  4. Evans, M.R., Majumdar, S.N., Zia, R.K.P.: Canonical analysis of condensation in factorised steady states. J. Stat. Phys. 123(2), 357–390 (2006)

    Article  MATH  Google Scholar 

  5. Godrèche, C.: Dynamics of condensation in zero-range processes. J. Phys. A 36(23), 6313–6328 (2003)

    Article  MATH  Google Scholar 

  6. Godrèche, C., Luck, J.M.: Dynamics of the condensate in zero-range processes. J. Phys. A 38(33), 7215–7237 (2005)

    Article  ADS  Google Scholar 

  7. Großkinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113(34), 389–410 (2003)

    Article  MATH  Google Scholar 

  8. Jeon, I., March, P.: Condensation transition for zero range invariant measures. In: Stochastic models (Ottawa, 1998). CMS Conf. Proc., vol. 26, pp. 233–244. Amer. Math. Soc., Providence (2000)

    Google Scholar 

  9. Jeon, I., March, P., Pittel, B.: Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28(3), 1162–1194 (2000)

    Article  MATH  Google Scholar 

  10. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320. Springer, Berlin (1999)

    MATH  Google Scholar 

  11. Majumdar, S.N., Evans, M.R., Zia, R.K.: Nature of the condensate in mass transport models. Phys. Rev. Lett. 94(18), 180–601 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, P.A., Landim, C. & Sisko, V.V. Condensation for a Fixed Number of Independent Random Variables. J Stat Phys 128, 1153–1158 (2007). https://doi.org/10.1007/s10955-007-9356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9356-3

Keywords

Navigation