Skip to main content
Log in

Mean-Field Driven First-Order Phase Transitions in Systems with Long-Range Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a class of spin systems on ℤd with vector valued spins (S x ) that interact via the pair-potentials J x,y S x S y . The interactions are generally spread-out in the sense that the J x,y 's exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d≥3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d = 1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique “state,” then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aizenman and R. Fernández, On the critical behavior of the magnetization in high-dimensional Ising models. J. Statist. Phys. 44:393–454 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. M. Aizenman, D. J. Barsky and R. Fernández, The phase transition in a general class of Ising-type models is sharp. J. Statist. Phys. 47:343–374(1987) .

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Aizenman, J. T. Chayes, L. Chayes and C. M. Newman, Discontinuity of the magnetization in one-dimensional 1/| xy|2 Ising and Potts models. J. Statist. Phys. 50 (1-2):1–40 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. N. Berger, Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys. 226:531–558 (2002).

    Article  MATH  ADS  Google Scholar 

  5. M. Biskup, C. Borgs, J. T. Chayes, L. J. Kleinwaks and R. Kotecký, General theory of Lee-Yang zeros in models with first-order phase transitions. Phys. Rev. Lett. 84:214794–4797 (2000).

    Google Scholar 

  6. M. Biskup, C. Borgs, J. T. Chayes, L. J. Kleinwaks and R. Kotecký, Partition function zeros at first-order phase transitions: A general analysis. Commun. Math. Phys. 251:79–131 (2004).

    Article  MATH  ADS  Google Scholar 

  7. M. Biskup, C. Borgs, J. T. Chayes, and R. Kotecký, Gibbs states of graphical representations of the Potts model with external fields. J. Math. Phys. 41(3):1170–1210 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. M. Biskup, C. Borgs, J. T. Chayes, and R. Kotecký, Partition function zeros at first-order phase transitions: Pirogov-Sinai theory. J. Statist. Phys. 116(1-4):97–155 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Biskup, C. Borgs, J. T. Chayes, and R. Kotecký, Phase diagrams of Potts models in external fields: I. Real fields, in preparation.

  10. M. Biskup, C. Borgs, J. T. Chayes, and R. Kotecký, Phase diagrams of Potts models in external fields: II. One complex field, in preparation.

  11. M. Biskup and L. Chayes, Rigorous analysis of discontinuous phase transitions via mean-field bounds. Commun. Math. Phys. 238(1-2):53–93 (2003).

    MATH  ADS  MathSciNet  Google Scholar 

  12. M. Biskup, L. Chayes, and R. Kotecký, Coexistence of partially disordered/ordered phases in an extended Potts model. J. Statist. Phys. 99(5-6):1169–1206 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Bricmont, H. Kesten, J. L. Lebowitz and R. H. Schonmann, A note on the Ising model in high dimensions., Commun. Math. Phys. 122:597–607 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. A. Bovier and M. Zahradník, The low-temperature phase of Kac-Ising models. J. Statist. Phys. 87:311–332 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Bovier and M. Zahradník, Cluster expansions and Pirogov-Sinai theory for long-range Ising systems. Markov Proc. Rel. Fields 8:443–478 (2002).

    MATH  Google Scholar 

  16. M. Cassandro, P. A. Ferrari, I. Merola and E. Presutti, Geometry of contours and Peierls estimates in d = 1 Ising models, math-ph/0211062.

  17. M. Cassandro and E. Presutti, Phase transitions in Ising systems with long but finite range interactions. Markov Process. Related Fields 2:241–262 (1996).

    MATH  MathSciNet  Google Scholar 

  18. M. Costeniuc, R. S. Ellis and H. Touchette, Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model. J. Math. Phys. 46:063301 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  19. F. J. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12(2):91–107 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  20. F. J. Dyson, An Ising ferromagnet with discontinuous long-range order. Commun. Math. Phys. 21:269–283 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Fernández, J. Fröhlich, and A. D Sokal, Random walks, critical phenomena, and triviality in quantum field theory, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  22. J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity. I. General theory and long-range lattice models. Commun. Math. Phys. 62(1):1–34 (1978).

    Article  ADS  Google Scholar 

  23. J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interations. J. Statist. Phys. 22(3):297–347 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Fröhlich, B. Simon and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50:79–95 (1976).

    Article  ADS  Google Scholar 

  25. H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1988.

  26. T. Hara, R. van der Hofstad, and G. Slade, Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31(1):349–408 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  27. R. van der Hofstad and G. Slade, A generalised inductive approach to the lace expansion, Probab. Theory Rel. Fields 122:389–430 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  28. R. van der Hofstad and G. Slade, Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions, Ann. Inst. H. Poincar Probab. Statist. 39(3) 413–485 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  29. R. van der Hofstad, F. den Hollander, and G. Slade, Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions. Commun. Math. Phys. 231(3):435–461 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. M. Kac, G. E. Unlenbeck, and P. C. Hemmer, On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys. 4:216–228 (1963).

    Article  ADS  Google Scholar 

  31. A. Kerimov, Absence of phase transitions in one-dimensional antiferromagnetic models with long-range interactions. J. Statist. Phys. 72(3-4):571–620 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. A. Kerimov, Phase transition in one-dimensional model with unique ground state. Physica A 225(2):271–276 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Kerimov, A condition for the uniqueness of Gibbs states in one-dimensional models. Physica A 258(1-2):183–202 (1998).

    Article  MathSciNet  Google Scholar 

  34. H. Kesten and R. Schonmann, Behavior in large dimensions of the Potts and Heisenberg models. Rev. Math. Phys. 1:147–182 (1990).

    Article  MathSciNet  Google Scholar 

  35. S.-Y. Kim and R. J. Creswick, Yang-Lee zeros of the q-state Potts model in the complex magnetic field plane. Phys. Rev. Lett. 81:2000–2003 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. J. L. Lebowitz, A. Mazel and E. Presutti, Liquid-vapor phase transitions for systems with finite-range interactions. J. Statist. Phys. 94:955–1025 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  37. J. L. Lebowitz and O. Penrose, Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition, J. Math. Phys. 7:98–113 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  38. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions: II. Lattice gas and Ising model. Phys. Rev. 87:410–419 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17(22):1133–1136 (1966).

    Article  ADS  Google Scholar 

  40. C. M. Newman and L. S. Schulman, One-dimensional 1/| ji|s percolation models: the existence of a transition for s≤ 2. Commun. Math. Phys. 104:547–571 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. S. A Pirogov and Ya.G. Sinai, Phase diagrams of classical lattice systems (Russian). Theor. Math. Phys. 25(3):358–369 (1975).

    Article  Google Scholar 

  42. S. A Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems. Continuation (Russian). Theor. Math. Phys. 26(1):61–76 (1976).

    Article  Google Scholar 

  43. A. Sakai, Lace expansion for the Ising model, talk at Banff meeting “Critical Scaling for Polymers and Percolation,” May 2005.

  44. B. Simon, The P(φ)2 Euclidean (Quantum) Field Theory, Princeton Series in Physics, Princeton University Press, Princeton, N. J., 1974.

    Google Scholar 

  45. B. Simon, The Statistical Mechanics of Lattice Gases, Vol. II (in preparation).

  46. J. Slawny, Low-temperature properties of classical lattice systems: phase transitions and phase diagrams, In. C. Domb and J. L. Lebowitz (Eds), Phase Transitions and Critical Phenomena, vol. 11, 127–205, Academic Press, London, 1987.

    Google Scholar 

  47. D. J. Thouless, Long-range order in one-dimensional Ising systems, Phys. Rev. 187(2) 732–733 (1969).

    Article  ADS  Google Scholar 

  48. F. Y. Wu, The Potts model. Rev. Modern Phys. 54:235–268 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  49. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions: I. Theory of condensation. Phys. Rev. 87:404–409 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. M. Zahradník, An alternate version of Pirogov-Sinai theory. Commun. Math. Phys. 93:559–581 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biskup, M., Chayes, L. & Crawford, N. Mean-Field Driven First-Order Phase Transitions in Systems with Long-Range Interactions. J Stat Phys 122, 1139–1193 (2006). https://doi.org/10.1007/s10955-005-8072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-8072-0

Key Words

Navigation