Skip to main content

Advertisement

Log in

Solubility Determination and Model Evaluation of Triethylamine Hydrochloride in Three Binary Mixed Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this study, the saturated solubility of triethylamine hydrochloride (TEA·HCl) was determined using the static method in binary mixed solvents ((1-Butanol, dimethyl sulfoxide (DMSO), 1-Octanol) + dimethyl carbonate (DMC)) at temperatures ranging from 298.15 to 333.15 K and ambient pressure (p = 0.1 MPa). Quantum chemistry calculations were performed to analyze the dissolution process among different solvents. Results showed that the obtained solubility data correlated well with five equations. Evaluation of solubility data was carried out by mean Average Relative Deviation (ARD) and Root-Mean-Square Deviation (RMSD). The findings indicated that the modified Apelblat model demonstrated the strongest correlation among the five models. The ARD and 10RMSD were 1.39% and 2.61, respectively. Subsequently, the Gibbs energy, enthalpy, and entropy of TEA·HCl dissolved in each mixed solvent can be determined by applying van’t Hoff equations, revealing an endothermic and entropy-driven dissolution process. The experimental results indicated that the solubility of TEA·HCl in the selected binary solvents increased with the increasing temperature and decreased with the increasing molar fraction of DMC. The solubility sequence in various systems was explained in terms of the solvation free energy. The solubility values, model parameters, and thermodynamic properties of TEA·HCl in different mixed solvents can be obtained through experimentation, providing foundational support for its preparation, crystallization process, and further theoretical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., Sharma, P.: Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 5, 15233–15266 (2015). https://doi.org/10.1039/C4RA15710A

    Article  CAS  Google Scholar 

  2. Dişli, A., Salman, M.: Synthesis of some new 5-substituted 1H-tetrazoles. Russ J. Org. Chem. 45, 151–153 (2009). https://doi.org/10.1134/S1070428009010217

    Article  CAS  Google Scholar 

  3. Ding, C.R., Yin, Y.L.: System and method for recovering triethylamine in the production process of vinylene carbonate: CN115672068A [P]. 2023-02-23.

  4. Duan, B., Wang, H., Wang, X.: Study on Recycling Technology of Triethylamine Hydrochloride. Henan Chem. Ind. 37, 36–38 (2020). https://doi.org/10.14173/j.cnki.hnhg.2020.11.010

    Article  CAS  Google Scholar 

  5. Newman, M.S., Addor, R.W.: Synthesis and reactions of Vinylene Carbonate. J. Am. Chem. Soc. 77, 3789–3793 (1955). https://doi.org/10.1021/ja01619a032

    Article  CAS  Google Scholar 

  6. Muradov, N., Veziroglu, T.: Green path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Ener. 33, 6804–6839 (2008). https://doi.org/10.1016/j.ijhydene.2008.08.054

    Article  CAS  Google Scholar 

  7. Wang, R.: Solubility determination and thermodynamic characterization of orotic acid in twelve pure solvents and four binary mixed solvents. J. Mol. Liq. 341, 117335 (2021). https://doi.org/10.1016/j.molliq.2021.117335

    Article  CAS  Google Scholar 

  8. Teng, J.F., Zong, F., Zhang, Z., Wang, L.L., Sun, X.Y., Xiang, S.G.: Measurement, correlation, and analysis of the solubility of triethylamine hydrochloride in ten pure solvents. J. Mol. Liq. 390, 123040 (2023). https://doi.org/10.1016/j.molliq.2023.123040

    Article  CAS  Google Scholar 

  9. Chemical Abstracts Services:, SciFinder Scholar, (2023). http://www.cas.org/SCIFINDER/SCHOLAR

  10. Mao, H., Song, L., Wang, C., Zhang, P., Liu, K., Tang, T., Jin, M.: Measurement and correlation of 4,4′-dihydroxydiphenylsulfone solubility in ten neat organic solvents at temperatures from 278.15 K to 313.15 K. J. Chem. Thermodyn. 174, 106875 (2022). https://doi.org/10.1016/j.jct.2022.106875

    Article  CAS  Google Scholar 

  11. Yuan, N., Chen, Z., Suo, Z., Cheng, Q., Sun, Q., Li, Y., Li, H.: Solubility measurement, thermodynamic modeling, and molecular dynamic simulation of regorafenib in pure and binary solvents. J. Chem. Thermodyn. 167, 106720 (2022). https://doi.org/10.1016/j.jct.2021.106720

    Article  CAS  Google Scholar 

  12. Pliego, J.R., Riveros, J.M.: Hybrid discrete-continuum solvation methods. WIREs Comput. Mol. Sci. 10(2): e1440 (2020). https://doi.org/10.1002/wcms.1440 

  13. Lee, Y.I.: Var. Dielectric Constants Ferroelectr. 482, 54–59 (2015). https://doi.org/10.1080/00150193.2015.1056706

    Article  CAS  Google Scholar 

  14. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G.V., Barone, G.A., Petersson., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., WilliamsYoung, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma: (2016). K., Farkas, O., Foresman, J.B., and Fox, D.J., Gaussian 16, Revision A.03

  15. Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993). https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  16. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011). https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  17. Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297 (2005). https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  18. Lipparini, F., Scalmani, G., Mennucci, B., Cancès, E., Caricato, M., Frisch, M.J.: A variational formulation of the polarizable continuum model. J. Chem. Phys. 133, 014106 (2014). https://doi.org/10.1063/1.3454683

    Article  CAS  Google Scholar 

  19. Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Universal Solvation Model based on Solute Electron Density and on a Continuum Model of the Solvent defined by the Bulk Dielectric constant and atomic surface tensions. J. Phys. Chem. B. 113, 6378–6396 (2009). https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  20. Yi, D., Dong, Y., Wang, Q., Wu, J., Qi, M., Ren, G.: Analysis of the dissolution behavior and solubility of Rotigotine form II in different mono-solvents. J. Mol. Liq. 377, 121532 (2023). https://doi.org/10.1016/j.molliq.2023.121532

    Article  CAS  Google Scholar 

  21. Zhang, J., Lu, T.: Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 23, 20323–20328 (2021). https://doi.org/10.1039/D1CP02805G

    Article  CAS  PubMed  Google Scholar 

  22. Lu, T., Chen, F.: Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  23. Lu, T., Chen, F.: Quantitative analysis of molecular surface based on improved marching Tetrahedra algorithm. J. Mole Graph Model. 38, 314–323 (2012). https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  Google Scholar 

  24. Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. J. Mole Graph Model. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  25. Apelblat, A., Manzurola, E.: Solubilities of L-aspartic, DL-aspartic, DL-glutamic, p-hydroxybenzoic, o-anisic, p-anisic, and itaconic acids in water from T = 278 K to T = 345 K. J. Chem. Thermodyn. 29, 1527–1533 (1997). https://doi.org/10.1006/jcht.1997.0267

    Article  CAS  Google Scholar 

  26. Apelblat, A., Manzurola, E.: Solubilities ofo-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, andp-toluic acid, and magnesium-DL-aspartate in water from T= (278 to 348) K. J. Chem. Thermodyn. 31, 85–91 (1999). https://doi.org/10.1006/jcht.1998.0424

    Article  CAS  Google Scholar 

  27. Wang, H.Q., Ren, J.P., Zhang, S.H., Dai, J.Y.: Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 K to 323.15 K. Chin. J. Chem. Eng. 60, 235–241 (2023). https://doi.org/10.1016/j.cjche.2023.02.024

    Article  Google Scholar 

  28. Nordström, F.L., Rasmuson, Å.C.: Prediction of solubility curves and melting properties of organic and pharmaceutical compounds. Eur. J. Pharm. Sci. 36, 330–344 (2009). https://doi.org/10.1016/j.ejps.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  29. Lian, P.B., Zhao, H.P., Wang, G.L., Chen, L.Z.: Determination and correlation solubility of m-phenylenediamine in (methanol, ethanol, acetonitrile and water) and their binary solvents from 278.15 K to 313.15 K. Chin. J. Chem. Eng. 27, 1149–1158 (2019). https://doi.org/10.1016/j.cjche.2018.11.005

    Article  CAS  Google Scholar 

  30. Wang, K., Hu, Y., Yang, W., Guo, S., Shi, Y.: Measurement and correlation of the solubility of 2,3,4,5-tetrabromothiophene in different solvents. J. Chem. Thermodyn. 55, 50–55 (2012). https://doi.org/10.1016/j.jct.2012.06.005

    Article  CAS  Google Scholar 

  31. Vasanthavada, M., Tong, W.Q., Joshi, Y., Kislalioglu, M.S.: Phase behavior of Amorphous Molecular dispersions II: Role of Hydrogen Bonding in Solid solubility and phase separation kinetics. Pharm. Res. 22, 440–448 (2005). https://doi.org/10.1007/s11095-004-1882-y

    Article  CAS  PubMed  Google Scholar 

  32. Speziale, A.J., Freeman, R.C.: Reactions of phosphorus compounds. II. A new type of oxidizing agents-trichloroacetamides. J. Chem. Soc. 82, 903–909 (1960). https://doi.org/10.1021/ja01489a034

    Article  CAS  Google Scholar 

  33. Jouyban, A.: Review of the co-solvency models for predicting solubility of drugs in water-cosolvent mixtures. J. Pharm. Pharm. Sci. 11, 32 (2008). https://doi.org/10.18433/J3PP4K

    Article  CAS  PubMed  Google Scholar 

  34. Jouyban, A., Acree, W.E.: Solubility prediction in non-aqueous binary solvents using a combination of Jouyban–Acree and Abraham models. Fluid Phase Equilib. 249, 24–32 (2006). https://doi.org/10.1016/j.fluid.2006.08.016

    Article  CAS  Google Scholar 

  35. Yin, Z., Gao, Y., Zhang, Y., Zhu, L., Luo, J.: Determination and correlation of solubility and solution thermodynamics of β-HMX in binary solvent mixtures. J. Chem. Thermodyn. 185, 107097 (2023). https://doi.org/10.1016/j.jct.2023.107097

    Article  CAS  Google Scholar 

  36. Fang, X., Gong, H., Yang, X., Yu, Y., Cao, C., Zhao, H., Xu, G., Liu, L.: Measurement and molecular simulation of the solubility properties of 4-tert-Butyl-2, 6-dinitro-3-methoxytoluene in single and binary solvents. J. Mol. Liq. 393, 123561 (2024). https://doi.org/10.1016/j.molliq.2023.123561

    Article  CAS  Google Scholar 

  37. Shokouhi, M., Jalili, A.H., Babakhani, E.G.: Carbon dioxide solubility in aqueous N-Methylpyrrolidone solution. Fluid Phase Equilib. 546, 113122 (2021). https://doi.org/10.1016/j.fluid.2021.113122

    Article  CAS  Google Scholar 

  38. Aldalawy, A., Abdi, M., Nath, D., BinDahbag, M., Hassanzadeh, H.: Measurements and modeling of dimethyl ether (DME) solubility in n-decane and DME-saturated liquid density at T = (293.15-393.15) K and P = (0.345–2.76) MPa. Fluid Phase Equilib. 540, 113797 (2023). https://doi.org/10.1016/j.fluid.2023.113797

    Article  CAS  Google Scholar 

  39. Orozco, M., Luque, F.J.: Generalization of the Molecular Electrostatic potential for the study of noncovalent interactions. J. Theor. Comput. Chem. 3, 181–218 (1996). https://doi.org/10.1016/S1380-7323(96)80044-6

    Article  CAS  Google Scholar 

  40. Scrocco, E., Tomasi, J.: The electrostatic molecular potential as a tool for the interpretation of molecular properties. New. Concepts II. 42, 95–170 (1973). https://doi.org/10.1007/3-540-06399-4_6

    Article  CAS  Google Scholar 

  41. Legault, C.Y.: CYLview, 1.0b. Université De Sherbrooke, (2009). http://www.cylview.org

  42. Marcus, Y., Kamlet, M.J., Taft, R.W.: Linear solvation energy relationships: Standard molar Gibbs free energies and enthalpies of transfer of ions from water into nonaqueous solvents. J. Phys. Chem. 92, 3613–3622 (1988). https://doi.org/10.1021/j100323a057

    Article  CAS  Google Scholar 

  43. Marcus, Y.: Solubility and solvation in mixed solvent systems. Pure Appl. Chem. 62, 2069–2076 (1990). https://doi.org/10.1351/pac199062112069

    Article  CAS  Google Scholar 

  44. Yamada, Y., Furukawa, K., Sodeyama, K., Kikuchi, K., Yaegashi, M., Tateyama, Y., Yamada, A.: Unusual Stability of Acetonitrile-based Super concentrated Electrolytes for fast-charging Lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014). https://doi.org/10.1021/ja412807w

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No. 22178190).

Author information

Authors and Affiliations

Authors

Contributions

ZZ responsibilities include investigation, computational analysis, and writing and original draft preparation. FZ is responsible for the use of software. JFT is responsible for the research of theoretical methods. LLW is responsible for supervision. XJ and SGX are responsible for supervision and Writing—review & editing.

Corresponding author

Correspondence to Shuguang Xiang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 900 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zong, F., Teng, J. et al. Solubility Determination and Model Evaluation of Triethylamine Hydrochloride in Three Binary Mixed Solvents. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01379-3

Keywords

Navigation