Skip to main content
Log in

Determination of Solubility and Thermodynamic Parameters of Triamterene in Pure and Ethanol-Modified Subcritical Water at Various Temperatures

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the solubility of Triamterene (TRM), a diuretic drug, in pure and ethanol-modified subcritical water (SCW) was investigated by a static method. Experiments were performed at high temperatures (363.15–433.15 K) with co-solvent (0–10% w/w ethanol) at a pressure of 20 bar. Increasing the temperature and weight percentage of ethanol significantly increased the mole fraction solubility of TRM. The mole fraction solubility of TRM in pure water (0% wt ethanol), 5%wt ethanol, and 10%wt ethanol was obtained in the range of 0.73 × 10–4–1.56 × 10–4, 0.73 × 10–4–1.82 × 10–4, and 0.78 × 10–4–2.16 × 10–4, respectively. For the correlation of experimental solubility data, linear and modified Apelblat models were selected. The values of ARD and RMSD were calculated as indicators of the accuracy and validity of the models. The modified Apelblat model showed the best performance in correlating the experimental solubility data. Finally, the dissolution thermodynamic functions (\({\Delta }_{dis}{G}^{^\circ }\), \({\Delta }_{dis}{H}^{^\circ }\) and \({\Delta }_{dis}{S}^{^\circ }\)) were calculated for the solubility of TRM in pure and ethanol-modified SCW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

a, B, and c:

Adjustable parameters of the model

ARD:

Average relative deviation

DSC:

Differential scanning calorimetry

FTIR:

Fourier transform infrared spectroscopy

\({\Delta }_{dis}{G}^{^\circ }\) :

Standard Gibbs energy of dissolution

\({\Delta }_{dis}{H}^{^\circ }\) :

Standard enthalpy of dissolution

RMSD:

Root mean square deviation

\({\Delta }_{dis}{S}^{^\circ }\) :

Standard entropy of dissolution

SCW:

Subcritical water

TG:

Thermogravimetric

TRM:

Triamterene

XRD:

X-ray diffraction

References

  1. Weinstock, J.; Pachter, I.J.; Nemeth, P.E.; Jaffe, G.: Pteridines. VII. Some 2, 4-diamino-6-phenylpteridines. J. Med. Chem. 11, 557–560 (1968). https://doi.org/10.1021/jm00309a031

    Article  Google Scholar 

  2. Osdene, T.; Russell, P.B.; Rane, L.: 2, 4, 7-Triamino-6-ortho-substituted arylpteridines. A new series of potent antimalarial agents. J. Med. Chem. 10, 431–434 (1967). https://doi.org/10.1021/jm00315a031

    Article  Google Scholar 

  3. Al-Kady, A.S.; Abdelmonem, F.I.: Highly sensitive and selective spectrophotometric detection of trace amounts of Hg2+ in environmental and biological samples based on 2, 4, 7-triamino-6-phenylpteridine. Sens. Actuators B Chem. 182, 87–94 (2013). https://doi.org/10.1016/j.snb.2013.02.102

    Article  Google Scholar 

  4. Hollenberg, N.K.; Mickiewicz, C.W.: Postmarketing surveillance in 70,898 patients treated with a triamterene/hydrochlorothiazide combination (Maxzide). Am. J. Cardiol. 63, 37–41 (1989). https://doi.org/10.1016/0002-9149(89)90937-5

    Article  Google Scholar 

  5. Luis, M.; Fraga, J.; Jiménez, A.; Jiménez, F.; Hernández, O.; Arias, J.: Application of PLS regression to fluorimetric data for the determination of furosemide and triamterene in pharmaceutical preparations and triamterene in urine. Talanta 62, 307–316 (2004). https://doi.org/10.1016/j.talanta.2003.07.010

    Article  Google Scholar 

  6. Dittert, L.W.; Higuchi, T.; Reese, D.R.: Phase solubility technique in studying the formation of complex salts of triamterene. J. Pharm. Sci. 53, 1325–1328 (1964). https://doi.org/10.1002/jps.2600531108

    Article  Google Scholar 

  7. Pruitt, A.W.; Winkel, J.S.; Dayton, P.G.: Variations in the fate of triamterene. Clin. Pharmacol. Ther. 21, 610–619 (1977). https://doi.org/10.1002/cpt1977215610

    Article  Google Scholar 

  8. Göke, K.; Lorenz, T.; Repanas, A.; Schneider, F.; Steiner, D.; Baumann, K.; Bunjes, H.; Dietzel, A.; Finke, J.H.; Glasmacher, B.; Kwade, A.: Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 126, 40–56 (2018). https://doi.org/10.1016/j.ejpb.2017.05.008

    Article  Google Scholar 

  9. Almeidae Sousa, L.; Reutzel-Edens, S.M.; Stephenson, G.A.; Taylor, L.S.: Supersaturation potential of salt, co-crystal, and amorphous forms of a model weak base. Crys. Growth. Des. 16, 737–748 (2016). https://doi.org/10.1021/acs.cgd.5b01341

    Article  Google Scholar 

  10. Rodriguez-Aller, M.; Guillarme, D.; Veuthey, J.-L.; Gurny, R.: Strategies for formulating and delivering poorly water-soluble drugs. J. Drug Deliv. Sci. Technol. 30, 342–351 (2015). https://doi.org/10.1016/j.jddst.2015.05.009

    Article  Google Scholar 

  11. Stella, V.J.; Nti-Addae, K.W.: Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 59, 677–694 (2007). https://doi.org/10.1016/j.addr.2007.05.013

    Article  Google Scholar 

  12. Di, L.; Fish, P.V.; Mano, T.: Bridging solubility between drug discovery and development. Drug Discov. Today 17, 486–495 (2012). https://doi.org/10.1016/j.drudis.2011.11.007

    Article  Google Scholar 

  13. Janssens, S.; Van den Mooter, G.: Physical chemistry of solid dispersions. J. Pharm. Pharmacol. 61, 1571–1586 (2009). https://doi.org/10.1211/jpp.61.12.0001

    Article  Google Scholar 

  14. Van Eerdenbrugh, B.; Van den Mooter, G.; Augustijns, P.: Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization, and transformation into solid products. Int. J. Pharm. 364, 64–75 (2008). https://doi.org/10.1016/j.ijpharm.2008.07.023

    Article  Google Scholar 

  15. Merisko-Liversidge, E.; Liversidge, G.G.: Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 63, 427–440 (2011). https://doi.org/10.1016/j.addr.2010.12.007

    Article  Google Scholar 

  16. Loftsson, T.; Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996). https://doi.org/10.1021/js950534b

    Article  Google Scholar 

  17. Shan, N.; Zaworotko, M.J.: The role of cocrystals in pharmaceutical science. Drug Discov. Today 13, 440–446 (2008). https://doi.org/10.1016/j.drudis.2008.03.004

    Article  Google Scholar 

  18. Sodeifian, G.; Razmimanesh, F.; Sajadian, S.A.: Solubility measurement of a chemotherapeutic agent (Imatinib mesylate) in supercritical carbon dioxide: Assessment of new empirical model. J. Supercrit. Fluids 146, 89–99 (2019). https://doi.org/10.1016/j.supflu.2019.01.006

    Article  Google Scholar 

  19. Sodeifian, G.; Sajadian, S.A.: Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). J. Supercrit. Fluids 133, 239–252 (2018). https://doi.org/10.1016/j.supflu.2017.10.015

    Article  Google Scholar 

  20. Sodeifian, G.; Detakhsheshpour, R.; Sajadian, S.A.: Experimental study and thermodynamic modeling of Esomeprazole (proton-pump inhibitor drug for stomach acid reduction) solubility in supercritical carbon dioxide. J. Supercrit. Fluids 154, 104606 (2019). https://doi.org/10.1016/j.supflu.2019.104606

    Article  Google Scholar 

  21. Share Mohammadi, H.; Haghighi Asl, A.; Khajenoori, M.: Experimental measurement and correlation of solubility of β-carotene in pure and ethanol-modified subcritical water. Chin. J. Chem. Eng. 28, 2620–2625 (2020). https://doi.org/10.1016/j.cjche.2020.07.006

    Article  Google Scholar 

  22. Curren, M.S.; King, J.W.: Solubility of triazine pesticides in pure and modified subcritical water. Anal. Chem. 73, 740–745 (2001). https://doi.org/10.1021/ac000906n

    Article  Google Scholar 

  23. Carr, A.G.; Mammucari, R.; Foster, N.R.: Solubility and micronization of griseofulvin in subcritical water. Ind. Eng. Chem. Res. 49, 3403–3410 (2010). https://doi.org/10.1021/ie901189r

    Article  Google Scholar 

  24. Castro-Puyana, M.; Marina, M.L.; Plaza, M.: Water as green extraction solvent: Principles and reasons for its use. Curr. Opin. Green. Sustain. Chem. 5, 31–36 (2017). https://doi.org/10.1016/j.cogsc.2017.03.009

    Article  Google Scholar 

  25. Ju, Z.; Howard, L.R.: Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. J. Food Sci. 70, 270–276 (2005). https://doi.org/10.1111/j.1365-2621.2005.tb07202.x

    Article  Google Scholar 

  26. Khajenoori, M.; Haghighi Asl, A.; Hormozi, F.: Proposed Models for Subcritical Water Extraction of Essential Oils. Chin. J. Chem. Eng. 17(3), 359–365 (2009). https://doi.org/10.1016/S1004-9541(08)60217-7

    Article  Google Scholar 

  27. Ramos, L.; Kristenson, E.M.; Brinkman, U.T.: Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J. Chromatogr. A 975, 3–29 (2002). https://doi.org/10.1016/S0021-9673(02)01336-5

    Article  Google Scholar 

  28. Haghighi Asl, A.; Khajenoori, M.: Green extraction in separation technology. CRC Press, Florida Boca Raton (2021)

    Google Scholar 

  29. Uematsu, M.; Frank, E.: Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 9, 1291–1306 (1980). https://doi.org/10.1063/1.555632

    Article  Google Scholar 

  30. Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H.: Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 95, 183–195 (2020). https://doi.org/10.1016/j.tifs.2019.11.018

    Article  Google Scholar 

  31. Haghighi Asl, A., Khajenoori, M.: Subcritical water extraction, In Mass transfer advances in sustainable energy and environment oriented numerical modeling, InTech, pp 459–487 (2013).

  32. Hassas-Roudsari, M.; Chang, P.R.; Pegg, R.B.; Tyler, R.T.: Antioxidant capacity of bioactives extracted from canola meal by subcritical water, ethanolic and hot water extraction. Food Chem. 114, 717–726 (2009). https://doi.org/10.1016/j.foodchem.2008.09.097

    Article  Google Scholar 

  33. Carr, A.G.; Mammucari, R.; Foster, N.R.: Solubility, solubility modeling, and precipitation of naproxen from subcritical water solutions. Ind. Eng. Chem. Res. 49, 9385–9393 (2010). https://doi.org/10.1021/ie9019825

    Article  Google Scholar 

  34. Share Mohammadi, H.; Haghighi Asl, A.; Khajenoori, M.: Production of pharmaceutical micro and nano particles by subcritical water based technologies: A review. J. Drug Deliv. Sci. Technol. 85, 104621 (2023). https://doi.org/10.1016/j.jddst.2023.104621

    Article  Google Scholar 

  35. Manzurola, E.; Apelblat, A.: Solubilities of L-glutamic acid, 3-nitrobenzoic acid, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 34, 1127–1136 (2002). https://doi.org/10.1006/jcht.2002.0975

    Article  Google Scholar 

  36. Zhang, C.; Liu, B.; Wang, X.; Wang, H.: Measurement and Correlation of the Solubilities of L-Valine in Water, Ethanol, N, N-Dimethylformamide, Acetone, and Isopropyl Alcohol between (293.15 and 343.15) K. J. Chem. Eng. Data 59, 2704–2708 (2014). https://doi.org/10.1021/je500035r

    Article  Google Scholar 

  37. Sodeifian, G.; Garlapati, C.; Hazaveie, S.M.; Sodeifian, F.: Solubility of 2, 4, 7-Triamino-6-phenylpteridine (triamterene, diuretic drug) in supercritical carbon dioxide: Experimental data and modeling. J. Chem. Eng. Data 65, 4406–4416 (2020). https://doi.org/10.1021/acs.jced.0c00268

    Article  Google Scholar 

  38. Dordunoo, S.K.; Ford, J.L.; Rubinstein, M.H.: Physical stability of solid dispersions containing triamterene or temazepam in polyethylene glycols. J. Pharm. Pharmacol. 49, 390–396 (1997). https://doi.org/10.1111/j.2042-7158.1997.tb06812.x

    Article  Google Scholar 

  39. Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S.: Pressurized hot water extraction (PHWE). J. Chromatogr. A 1217, 2484–2494 (2010). https://doi.org/10.1016/j.chroma.2009.12.050

    Article  Google Scholar 

  40. Share Mohammadi, H.; Haghighi Asl, A.; Khajenoori, M.: Solubility measurement and preparation of nanoparticles of ampicillin using subcritical water precipitation method. Korean J. Chem. Eng. 38, 2304–2312 (2021). https://doi.org/10.1007/s11814-021-0891-4

    Article  Google Scholar 

  41. Galamba, N.; Paiva, A.; Barreiros, S.; Simões, P.: Solubility of polar and nonpolar aromatic molecules in subcritical water: the role of the dielectric constant. J. Chem. Theory Comput. 15, 6277–6293 (2019). https://doi.org/10.1021/acs.jctc.9b00505

    Article  Google Scholar 

  42. Teoh, W.H., Mammucari, R., Vieira de Melo, S.A., Foster, N.R.: Solubility and solubility modeling of polycyclic aromatic hydrocarbons in subcritical water. Ind. Eng. Chem. Res. 52, 5806–5814 (2013). https://doi.org/10.1021/ie302124e.

  43. Share Mohammadi, H.; Haghighi Asl, A.; Khajenoori, M.: Experimental study and modeling of letrozole (anticancer drug) solubility in subcritical water: Production of nanoparticles using subcritical water precipitation method. J. Drug Deliv. Sci. Technol. 67, 102949 (2022). https://doi.org/10.1016/j.jddst.2021.102949

    Article  Google Scholar 

  44. Akay, S.; Kayan, B.; Cunbin, D.; Wang, J.; Yang, Y.: Research of sulfadiazine using subcritical water and water+ alcohol mixtures as the solvent: Solubility and thermodynamic property. J. Mol. Liq. 253, 270–276 (2018). https://doi.org/10.1016/j.molliq.2018.01.044

    Article  Google Scholar 

  45. Share Mohammadi, H.; Haghighi Asl, A.; Khajenoori, M.: Determination of amiodarone hydrochloride solubility in pure and ethanol-modified subcritical water: Experimental data and modeling. J. Mol. Liq. 362, 119679 (2022). https://doi.org/10.1016/j.molliq.2022.119679

    Article  Google Scholar 

  46. Gao, D.; Kobayashi, T.; Adachi, S.: Kinetics of sucrose hydrolysis in a subcritical water-ethanol mixture. J. of Appl. Glycosci. 61, 9–13 (2014). https://doi.org/10.5458/jag.jag.JAG-2013_006

    Article  Google Scholar 

  47. Teoh, W.H., Vieira de Melo, S.A., Mammucari, R., Foster, N.R.: Solubility and solubility modeling of polycyclic aromatic hydrocarbons in subcritical ethanol and water mixtures. Ind. Eng. Chem. Res. 53, 10238–10248 (2014). https://doi.org/10.1021/ie501276e.

  48. Akay, S.; Kayan, B.; Martínez, F.: Solubility of fluconazole in (ethanol+ water) mixtures: Determination, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq. 333, 115987 (2021). https://doi.org/10.1016/j.molliq.2021.115987

    Article  Google Scholar 

  49. Delgado, D.R.; Martínez, F.: Solution thermodynamics of sulfadiazine in some ethanol+ water mixtures. J. Mol. Liq. 187, 99–105 (2013). https://doi.org/10.1016/j.molliq.2013.06.011

    Article  Google Scholar 

  50. Mottahedin, P.; Asl, A.H.; Lotfollahi, M.N.: Experimental and modeling investigation on the solubility of β-carotene in pure and ethanol-modified subcritical water. J. Mol. Liq. 237, 257–265 (2017). https://doi.org/10.1016/j.molliq.2017.04.036

    Article  Google Scholar 

  51. Carr, A.G.; Branch, A.; Mammucari, R.; Foster, N.R.: The solubility and solubility modelling of budesonide in pure and modified subcritical water solutions. J. Supercrit. Fluids 55, 37–42 (2010). https://doi.org/10.1016/j.supflu.2010.08.001

    Article  Google Scholar 

  52. Krug, R.; Hunter, W.; Grieger, R.: Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J. Phys. Chem. 80, 2335–2341 (1976). https://doi.org/10.1021/j100562a006

    Article  Google Scholar 

  53. Krug, R.; Hunter, W.; Grieger, R.: Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 80, 2341–2351 (1976). https://doi.org/10.1021/j100562a007

    Article  Google Scholar 

  54. Ruidiaz, M.A.; Delgado, D.R.; Martínez, F.; Marcus, Y.: Solubility and preferential solvation of indomethacin in 1, 4-dioxane+ water solvent mixtures. Fluid Phase Equilib. 299, 259–265 (2010). https://doi.org/10.1016/j.fluid.2010.09.027

    Article  Google Scholar 

  55. Perlovich, G.L.; Kurkov, S.V.; Kinchin, A.N.; Bauer-Brandl, A.: Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs. Eur. J. Pharm. Biopharm. 57, 411–420 (2004). https://doi.org/10.1016/j.ejpb.2003.10.021

    Article  Google Scholar 

  56. Akay, S.; Yang, Y.; Kayan, B.: Investigation on the solubility of the antidepressant drug escitalopram in subcritical water. J. Chem. Eng. Data 66, 2550–2560 (2021). https://doi.org/10.1021/acs.jced.1c00148

    Article  Google Scholar 

  57. Shakeel, F.; Anwer, M.K.: Dissolution thermodynamics and solubility of silymarin in PEG 400-water mixtures at different temperatures. Drug Dev. Ind. Pharm. 41, 1819–1823 (2015). https://doi.org/10.3109/03639045.2015.1009914

    Article  Google Scholar 

  58. Romero, S.; Reillo, A.; Escalera, B.; Bustamante, P.: The behavior of paracetamol in mixtures of amphirotic and amphiprotic-aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chem. Pharm. Bull. 44, 1061–1064 (1996). https://doi.org/10.1248/cpb.44.1061

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Khajenoori.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delkhani, M., Khajenoori, M. & Asl, A.H. Determination of Solubility and Thermodynamic Parameters of Triamterene in Pure and Ethanol-Modified Subcritical Water at Various Temperatures. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08883-0

Keywords

Navigation