Skip to main content
Log in

Quantum Chemistry-Based Approach for Density Prediction of non-ionic Hydrophobic Eutectic Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Non-ionic hydrophobic eutectic solvents have emerged as a new class of eutectic solvents. They are prepared by mixing two non-ionic components. They have gained significant interest compared to their counterpart ionic hydrophobic eutectic solvents and hydrophobic ionic liquids due to the availability of a wide array of non-ionic substances that can be used to prepare these solvents. Understanding the distinct physical characteristics of these solvents is crucial to their practical application within process industries and associated fields. The present work reports the development of a density model for these solvents based on the conductor-like screening model (COSMO), a dielectric continuum solvation model. For this purpose, a comprehensive literature search was carried out, and 485 density points of 37 different hydrophobic non-ionic eutectic solvents were collected. COSMO volume, one of the outputs of the COSMO calculations, was correlated with the experimental molar volume for the model development. Two different models were developed, one at 298.15 K and another a general model that can predict the density over a wide temperature range at atmospheric pressure. The developed model only requires the molar ratio and COSMO volumes of the components forming the eutectic solvents to predict the density. The proposed general model performed better than most other models and was comparable with the best one reported in the literature, with an average relative deviation percent (ARD%) of 1.34%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 70–71 (2003). https://doi.org/10.1039/B210714G

  2. Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004). https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Q., De Oliveira Vigier, K., Royer, S., Jérôme, F.: Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 41, 7108 (2012). https://doi.org/10.1039/c2cs35178a

    Article  CAS  PubMed  Google Scholar 

  4. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C.: Natural deep eutectic solvents – Solvents for the 21st century. ACS Sustain. Chem. Eng. 2, 1063–1071 (2014). https://doi.org/10.1021/sc500096j

    Article  CAS  Google Scholar 

  5. Cruz, H., Jordão, N., Branco, L.C.: Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices. Green. Chem. 19, 1653–1658 (2017). https://doi.org/10.1039/c7gc00347a

    Article  CAS  Google Scholar 

  6. Mbous, Y.P., Hayyan, M., Hayyan, A., Wong, W.F., Hashim, M.A., Looi, C.Y.: Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotechnol. Adv. 35, 105–134 (2017). https://doi.org/10.1016/j.biotechadv.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  7. Shishov, A., Bulatov, A., Locatelli, M., Carradori, S., Andruch, V.: Application of deep eutectic solvents in analytical chemistry. A review. Microchem J. 135, 33–38 (2017). https://doi.org/10.1016/j.microc.2017.07.015

    Article  CAS  Google Scholar 

  8. Ruesgas-Ramón, M., Figueroa-Espinoza, M.C., Durand, E.: Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food Chem. 65, 3591–3601 (2017). https://doi.org/10.1021/acs.jafc.7b01054

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Y., Friesen, J.B., McAlpine, J.B., Lankin, D.C., Chen, S.-N., Pauli, G.F.: Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 81, 679–690 (2018). https://doi.org/10.1021/acs.jnatprod.7b00945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wazeer, I., Hadj-kali, M.K.: Deep eutectic solvents: Designer fluids for chemical processes. J. Chem. Technol. Biotechnol. 93, 945–958 (2018). https://doi.org/10.1002/ctb.5491

    Article  CAS  Google Scholar 

  11. Pätzold, M., Siebenhaller, S., Kara, S., Liese, A., Syldatk, C., Holtmann, D.: Deep eutectic solvents as efficient solvents in biocatalysis. Trends Biotechnol. 37, 943–959 (2019). https://doi.org/10.1016/j.tibtech.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  12. Kalhor, P., Ghandi, K.: Deep eutectic solvents as catalysts for upgrading biomass. Catalysts. 11, 178 (2021). https://doi.org/10.3390/catal11020178

    Article  CAS  Google Scholar 

  13. Atilhan, M., Aparicio, S.: Review and perspectives for effective solutions to grand challenges of energy and fuels technologies via novel deep eutectic solvents. Energy Fuels. 35, 6402–6419 (2021). https://doi.org/10.1021/acs.energyfuels.1c00303

    Article  CAS  Google Scholar 

  14. Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B.W., Gurkan, B., Maginn, E.J., Ragauskas, A., Dadmun, M., Zawodzinski, T.A., Baker, G.A., Tuckerman, M.E., Savinell, R.F., Sangoro, J.R.: Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 121, 1232–1285 (2021). https://doi.org/10.1021/acs.chemrev.0c00385

    Article  CAS  PubMed  Google Scholar 

  15. Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014). https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  16. Bhagwat, P., Amobonye, A., Singh, S., Pillai, S.: Deep eutectic solvents in the pretreatment of feedstock for efficient fractionation of polysaccharides: Current status and future prospects. Biomass Convers. Biorefinery. 12, 171–195 (2022). https://doi.org/10.1007/s13399-021-01745-x

    Article  CAS  Google Scholar 

  17. Yuan, Z., Liu, H., Yong, W.F., She, Q., Esteban, J.: Status and advances of deep eutectic solvents for metal separation and recovery. Green. Chem. 24, 1895–1929 (2022). https://doi.org/10.1039/D1GC03851F

    Article  CAS  Google Scholar 

  18. Zeng, Q., Wang, Y., Huang, Y., Ding, X., Chen, J., Xu, K.: Deep eutectic solvents as novel extraction media for protein partitioning. Analyst. 139, 2565 (2014). https://doi.org/10.1039/c3an02235h

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Tang, B., Zhang, H., Row, K.H.: Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J. Sep. Sci. 38, 1053–1064 (2015). https://doi.org/10.1002/jssc.201401347

    Article  CAS  PubMed  Google Scholar 

  20. García, G., Aparicio, S., Ullah, R., Atilhan, M.: Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy Fuels. 29, 2616–2644 (2015). https://doi.org/10.1021/ef5028873

    Article  CAS  Google Scholar 

  21. Liu, P., Hao, J.W., Mo, L.P., Zhang, Z.H.: Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 5, 48675–48704 (2015). https://doi.org/10.1039/c5ra05746a

    Article  ADS  CAS  Google Scholar 

  22. Rodriguez, N.R., Requejo, P.F., Kroon, M.C.: Aliphatic–aromatic separation using deep eutectic solvents as extracting agents. Ind. Eng. Chem. Res. 54, 11404–11412 (2015). https://doi.org/10.1021/acs.iecr.5b02611

    Article  CAS  Google Scholar 

  23. Li, X., Row, K.H.: Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 39, 3505–3520 (2016). https://doi.org/10.1002/jssc.201600633

    Article  CAS  PubMed  Google Scholar 

  24. Alonso, D.A., Baeza, A., Chinchilla, R., Guillena, G., Pastor, I.M., Ramón, D.J.: Deep eutectic solvents: The organic reaction medium of the century. European J. Org. Chem. 612–632 (2016). (2016). https://doi.org/10.1002/ejoc.201501197

  25. Van Osch, D.J.G.P., Zubeir, L.F., Van Den Bruinhorst, A., Rocha, M.A.A., Kroon, M.C.: Hydrophobic deep eutectic solvents as water-immiscible extractants. Green. Chem. 17, 4518–4521 (2015). https://doi.org/10.1039/c5gc01451d

    Article  Google Scholar 

  26. van Osch, D.J.G.P., Dietz, C.H.J.T., Warrag, S.E.E., Kroon, M.C.: The curious case of hydrophobic deep eutectic solvents: A story on the discovery, design and applications. ACS Sustain. Chem. Eng. 8, 10591–10612 (2020). https://doi.org/10.1021/acssuschemeng.0c00559

    Article  CAS  Google Scholar 

  27. Cao, J., Su, E.: Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry. J. Clean. Prod. 314, 127965 (2021). https://doi.org/10.1016/j.jclepro.2021.127965

    Article  CAS  Google Scholar 

  28. Sas, O.G., Villar, L., Domínguez, Á., González, B., Macedo, E.A.: Hydrophobic deep eutectic solvents as extraction agents of nitrophenolic pollutants from aqueous systems. Environ. Technol. Innov. 25, 102170 (2022). https://doi.org/10.1016/j.eti.2021.102170

    Article  CAS  Google Scholar 

  29. Devi, M., Moral, R., Thakuria, S., Mitra, A., Paul, S.: Hydrophobic deep eutectic solvents as greener substitutes for conventional extraction media: Examples and techniques. ACS Omega. 8, 9702–9728 (2023). https://doi.org/10.1021/acsomega.2c07684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abranches, D.O., Martins, M.A.R., Silva, L.P., Schaeffer, N., Pinho, S.P., Coutinho, J.A.P.: Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest for type V DES. Chem. Commun. 55, 10253–10256 (2019). https://doi.org/10.1039/C9CC04846D

    Article  CAS  Google Scholar 

  31. Schaeffer, N., Conceição, J.H.F., Martins, M.A.R., Neves, M.C., Pérez-Sánchez, G., Gomes, J.R.B., Papaiconomou, N., Coutinho, J.A.P.: Non-ionic hydrophobic eutectics – versatile solvents for tailored metal separation and valorisation. Green. Chem. 22, 2810–2820 (2020). https://doi.org/10.1039/D0GC00793E

    Article  CAS  Google Scholar 

  32. Chen, J., Li, X., Huang, A., Deng, W., Xiao, Y.: Nonionic surfactants based hydrophobic deep eutectic solvents for liquid–liquid microextraction of Sudan dyes in tomato Chili sauces. Food Chem. 364, 130373 (2021). https://doi.org/10.1016/j.foodchem.2021.130373

    Article  CAS  PubMed  Google Scholar 

  33. Schaeffer, N., Abranches, D.O., Silva, L.P., Martins, M.A.R., Carvalho, P.J., Russina, O., Triolo, A., Paccou, L., Guinet, Y., Hedoux, A., Coutinho, J.A.P.: Non-ideality in thymol + menthol type V deep eutectic solvents. ACS Sustain. Chem. Eng. 9, 2203–2211 (2021). https://doi.org/10.1021/acssuschemeng.0c07874

    Article  CAS  Google Scholar 

  34. D’Hondt, C., Morineau, D.: Dynamics of type V menthol-thymol deep eutectic solvents: Do they reveal non-ideality? J. Mol. Liq. 365, 120145 (2022). https://doi.org/10.1016/j.molliq.2022.120145

    Article  CAS  Google Scholar 

  35. Abranches, D.O., Coutinho, J.A.P.: Type V deep eutectic solvents: Design and applications. Curr. Opin. Green. Sustain. Chem. 35, 100612 (2022). https://doi.org/10.1016/j.cogsc.2022.100612

    Article  CAS  Google Scholar 

  36. Ismail, N., Pan, J., Rahmati, M., Wang, Q., Bouyer, D., Khayet, M., Cui, Z., Tavajohi, N.: Non-ionic deep eutectic solvents for membrane formation. J. Memb. Sci. 646, 120238 (2022). https://doi.org/10.1016/j.memsci.2021.120238

    Article  CAS  Google Scholar 

  37. Tang, W., Wu, Y., Wang, M., Row, K.H., Qiu, H., Zhou, J.-L.: Emerging application of extraction phase of ionic and non-ionic deep eutectic solvents toward natural herbal medicine. TrAC Trends Anal. Chem. 165, 117137 (2023). https://doi.org/10.1016/j.trac.2023.117137

    Article  CAS  Google Scholar 

  38. Trenzado, J.L., Benito, C., Atilhan, M., Aparicio, S.: Hydrophobic deep eutectic solvents based on cineole and organic acids. J. Mol. Liq. 377, 121322 (2023). https://doi.org/10.1016/j.molliq.2023.121322

    Article  CAS  Google Scholar 

  39. Vaz, I.C.M., Lobo Ferreira, A.I.M.C., Silva, G.M.C., Morgado, P., Abranches, D.O., Bastos, M., Santos, L.M.N.B.F., Filipe, E.J.M., Coutinho, J.A.P.: The path towards type V deep eutectic solvents: Inductive effects and steric hindrance in the system tert -butanol + perfluoro tert -butanol. Phys. Chem. Chem. Phys. 25, 11227–11236 (2023). https://doi.org/10.1039/D3CP00701D

    Article  CAS  PubMed  Google Scholar 

  40. Crema, A.P.S., Schaeffer, N., Bastos, H., Silva, L.P., Abranches, D.O., Passos, H., Hespanhol, M.C., Coutinho, J.A.P.: New family of type V eutectic solvents based on 1,10-phenanthroline and their application in metal extraction. Hydrometallurgy. 215, 105971 (2023). https://doi.org/10.1016/j.hydromet.2022.105971

    Article  CAS  Google Scholar 

  41. Haghbakhsh, R., Bardool, R., Bakhtyari, A., Duarte, A.R.C., Raeissi, S.: Simple and global correlation for the densities of deep eutectic solvents. J. Mol. Liq. 296, 111830 (2019). https://doi.org/10.1016/j.molliq.2019.111830

    Article  CAS  Google Scholar 

  42. Valderrama, J.O., Robles, P.A.: Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind. Eng. Chem. Res. 46, 1338–1344 (2007). https://doi.org/10.1021/ie0603058

    Article  CAS  Google Scholar 

  43. Valderrama, J.O., Sanga, W.W., Lazzús, J.A.: Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind. Eng. Chem. Res. 47, 1318–1330 (2008). https://doi.org/10.1021/ie071055d

    Article  CAS  Google Scholar 

  44. Roosta, A., Haghbakhsh, R., Duarte, A.R.C., Raeissi, S.: Machine learning coupled with group contribution for predicting the density of deep eutectic solvents. Fluid Phase Equilib. 565, 113672 (2023). https://doi.org/10.1016/j.fluid.2022.113672

    Article  CAS  Google Scholar 

  45. Palomar, J., Ferro, V.R., Torrecilla, J.S., Rodríguez, F.: Density and molar volume predictions using COSMO-RS for ionic liquids. An approach to solvent design. Ind. Eng. Chem. Res. 46, 6041–6048 (2007). https://doi.org/10.1021/ie070445x

    Article  CAS  Google Scholar 

  46. Klamt, A., Schüürmann, G.: COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2. 799–805 (1993). https://doi.org/10.1039/P29930000799

  47. Klamt, A.: The COSMO and COSMO-RS solvation models. WIREs Comput. Mol. Sci. 1, 699–709 (2011). https://doi.org/10.1002/wcms.56

    Article  CAS  Google Scholar 

  48. Ribeiro, B.D., Florindo, C., Iff, L.C., Coelho, M.A.Z., Marrucho, I.M.: Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents. ACS Sustain. Chem. Eng. 3, 2469–2477 (2015). https://doi.org/10.1021/acssuschemeng.5b00532

    Article  CAS  Google Scholar 

  49. van Osch, D.J.G.P., Parmentier, D., Dietz, C.H.J.T., van den Bruinhorst, A., Tuinier, R., Kroon, M.C.: Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem. Commun. 52, 11987–11990 (2016). https://doi.org/10.1039/C6CC06105B

    Article  CAS  Google Scholar 

  50. Florindo, C., Romero, L., Rintoul, I., Branco, L.C., Marrucho, I.M.: From phase change materials to green solvents: Hydrophobic low viscous fatty acid–based deep eutectic solvents. ACS Sustain. Chem. Eng. 6, 3888–3895 (2018). https://doi.org/10.1021/acssuschemeng.7b04235

    Article  CAS  Google Scholar 

  51. Martins, M.A.R., Crespo, E.A., Pontes, P.V.A., Silva, L.P., Bülow, M., Maximo, G.J., Batista, E.A.C., Held, C., Pinho, S.P., Coutinho, J.A.P.: Tunable hydrophobic eutectic solvents based on terpenes and monocarboxylic acids. ACS Sustain. Chem. Eng. 6, 8836–8846 (2018). https://doi.org/10.1021/acssuschemeng.8b01203

    Article  CAS  Google Scholar 

  52. Verma, R., Banerjee, T.: Palmitic-acid‐based hydrophobic deep eutectic solvents for the extraction of lower alcohols from aqueous media: Liquid–liquid equilibria measurements, validation and process economics. Glob Challenges. 3, 1900024 (2019). https://doi.org/10.1002/gch2.201900024

    Article  Google Scholar 

  53. Martins, M.A.R., Silva, L.P., Schaeffer, N., Abranches, D.O., Maximo, G.J., Pinho, S.P., Coutinho, J.A.P.: Greener terpene–terpene eutectic mixtures as hydrophobic solvents. ACS Sustain. Chem. Eng. 7, 17414–17423 (2019). https://doi.org/10.1021/acssuschemeng.9b04614

    Article  CAS  Google Scholar 

  54. Mat Hussin, S.A., Varanusupakul, P., Shahabuddin, S., Yih Hui, B., Mohamad, S.: Synthesis and characterization of green menthol-based low transition temperature mixture with tunable thermophysical properties as hydrophobic low viscosity solvent. J. Mol. Liq. 308, 113015 (2020). https://doi.org/10.1016/j.molliq.2020.113015

    Article  CAS  Google Scholar 

  55. Almustafa, G., Sulaiman, R., Kumar, M., Adeyemi, I., Arafat, H.A., AlNashef, I.: Boron extraction from aqueous medium using novel hydrophobic deep eutectic solvents. Chem. Eng. J. 395, 125173 (2020). https://doi.org/10.1016/j.cej.2020.125173

    Article  CAS  Google Scholar 

  56. van Osch, D.J.G.P., van Spronsen, J., Esteves, A.C.C., Tuinier, R., Vis, M.: Oil-in-water emulsions based on hydrophobic eutectic systems. Phys. Chem. Chem. Phys. 22, 2181–2187 (2020). https://doi.org/10.1039/C9CP06762K

    Article  PubMed  Google Scholar 

  57. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G., Nakatsuji, H., Li, X., Caricato, M., Marenich, V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin: (2016). R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J.: G16_C01

  59. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  CAS  Google Scholar 

  60. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  CAS  Google Scholar 

  61. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994). https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  62. Anantharaj, R., Banerjee, T.: COSMO-RS-based screening of ionic liquids as green solvents in denitrification studies. Ind. Eng. Chem. Res. 49, 8705–8725 (2010). https://doi.org/10.1021/ie901341k

    Article  CAS  Google Scholar 

  63. Haghbakhsh, R., Raeissi, S., Duarte, A.R.C.: Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents. Sci. Rep. 11, 6684 (2021). https://doi.org/10.1038/s41598-021-85824-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Author(s) acknowledge the Department of Computer Science and Engineering, BIT-MESRA, for providing a High Performance Computing facility to carry out the Research.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: G. Kumar, K. Kumar, A. Bharti; Methodology: G. Kumar, K. Kumar, A. Bharti; Formal analysis and investigation: G. Kumar, K. Kumar, A. Bharti; Writing-original draft preparation: G. Kumar; Writing-review and editing: A. Bharti, K. Kumar; Supervision: A. Bharti.

Corresponding author

Correspondence to Anand Bharti.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

These authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Kumar, K. & Bharti, A. Quantum Chemistry-Based Approach for Density Prediction of non-ionic Hydrophobic Eutectic Solvents. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01372-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01372-w

Keywords

Navigation