Skip to main content
Log in

Revealing the Molecular Interaction of Surface Active Ionic Liquids [C8mim][Cl] and [C10mim][Cl] with Anionic Dye Eosin Yellow: A Comparative Study with Analogous Cationic Surfactants

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aggregation behaviour of two cationic surfactants octyltrimethylammonium bromide [OTMAB], decyltrimethylammonium bromide [DTMAB] and two surface active ionic liquids 1-methyl-3-octylimidazolium chloride [C8mim][Cl], 1-methyl-3-decylimidazolium chloride [C10mim][Cl] with anionic dye eosin yellow were investigated by conductometry, UV–Visible spectroscopy and fluorescence spectroscopy. Decrease in CMC of SAILs/surfactants is observed in presence of eosin yellow. Spectroscopic analysis demonstrates a shift in spectra of dye which implies SAILs/surfactants interaction with dye. Binding constant (Ka) obtained by UV–Visible spectroscopy and fluorescence spectroscopy follows the sequence [C10mim][Cl] > [C8mim][Cl] and [DTMAB] > [OTMAB]. The binding constant seems to be mostly dependent on the carbon chain length of these SAILs as well as surfactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nandwani, S.K., Chakraborty, M., Gupta, S.: Adsorption of surface active ionic liquids on different rock types under high salinity conditions. Sci. Rep. 9, 14760 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kapitanov, I.V., Jordan, A., Karpichev, Y., Spulak, M., Perez, L., Kellett, A., Kümmerer, K., Gathergood, N.: Synthesis, self-assembly, bacterial and fungal toxicity, and preliminary biodegradation studies of a series of <scp>l</scp> -phenylalanine-derived surface-active ionic liquids. Green Chem. 21, 1777–1794 (2019)

    Article  CAS  Google Scholar 

  3. Bhadani, A., Tani, M., Endo, T., Sakai, K., Abe, M., Sakai, H.: New ester based gemini surfactants: the effect of different cationic headgroups on micellization properties and viscosity of aqueous micellar solution. Phys. Chem. Chem. Phys. 17, 19474–19483 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, L., Tian, T., Xiao, J., Wang, T., Yu, L.: Aggregation behavior of pyrrolidinium-based surface active ionic liquids in H2O-EAN binary solvents. J. Mol. Liq. 225, 50–55 (2017)

    Article  CAS  Google Scholar 

  5. Zhang, J., Sun, B., Zhao, Y., Tkacheva, A., Liu, Z., Yan, K., Guo, X., McDonagh, A.M., Shanmukaraj, D., Wang, C., Rojo, T., Armand, M., Peng, Z., Wang, G.: A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 10, 602 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hashemi, S., Saien, J.: Equilibrium and dynamic interfacial tensions of oil/water in the presence of an imidazolium ionic liquid strengthen with magnetite nanoparticles. J. Mol. Liq. 281, 252–260 (2019)

    Article  CAS  Google Scholar 

  7. Jessop, P.G.: Fundamental properties and practical applications of ionic liquids: concluding remarks. Faraday Discuss. 206, 587–601 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Q., Zhang, Z., Sun, X.-G., Hu, Y.-S., Xing, H., Dai, S.: Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev. 47, 2020–2064 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. Wu, A., Lu, F., Sun, P., Gao, X., Shi, L., Zheng, L.: Photoresponsive self-assembly of surface active ionic liquid. Langmuir 32, 8163–8170 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Breen, J.M., Olejarz, S., Seddon, K.R.: Microwave synthesis of short-chained fluorinated ionic liquids and their surface properties. ACS Sustain. Chem. Eng. 4, 387–391 (2016)

    Article  CAS  Google Scholar 

  11. Huang, Z., Qi, P., Liu, Y., Chai, C., Wang, Y., Song, A., Hao, J.: Ionic-surfactants-based thermotropic liquid crystals. Phys. Chem. Chem. Phys. 21, 15256–15281 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. Singh, G., Singh, G., Kang, T.S.: Colloidal systems of surface active ionic liquids and sodium carboxymethyl cellulose: physicochemical investigations and preparation of magnetic nano-composites. Phys. Chem. Chem. Phys. 20, 18528–18538 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez-Fernandez, A., Hammond, O.S., Edler, K.J., Arnold, T., Doutch, J., Dalgliesh, R.M., Li, P., Ma, K., Jackson, A.J.: Counterion binding alters surfactant self-assembly in deep eutectic solvents. Phys. Chem. Chem. Phys. 20, 13952–13961 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Thoppil, A.A., Chennuri, B.K., Gardas, R.L.: Insights into the structural changes of bovine serum albumin in ethanolammonium laurate based surface active ionic liquids. J. Mol. Liq. 290, 111229 (2019)

    Article  CAS  Google Scholar 

  16. Torres, M.D., Corchero, R., Rodríguez-Escontrela, I., Soto, A., Moreira, R.: Thermo-rheology of a proline-based surface-active ionic liquid: mixtures with water and n -octane. Chem. Eng. Technol. 42, 1952–1959 (2019)

    Article  CAS  Google Scholar 

  17. Shen, J., Ding, P., Gao, L., Gao, Y., Zhang, Q., Yuan, S., Xin, X.: Formation of organogels with aggregation-induced emission characteristics triggered by thermal and ultrasound. Colloid Polym. Sci. 295, 1765–1772 (2017)

    Article  CAS  Google Scholar 

  18. Łuczak, J., Jungnickel, C., Joskowska, M., Thöming, J., Hupka, J.: Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J. Colloid Interface Sci. 336, 111–116 (2009)

    Article  PubMed  Google Scholar 

  19. Al-Samhan, M., Samuel, J., Al-Attar, F., Abraham, G.: Comparative effects of MMT clay modified with two different cationic surfactants on the thermal and rheological properties of polypropylene nanocomposites. Int. J. Polym. Sci. 2017, 1–8 (2017)

    Article  Google Scholar 

  20. Łuczak, J., Latowska, A., Hupka, J.: Micelle formation of Tween 20 nonionic surfactant in imidazolium ionic liquids. Colloids Surf. A 471, 26–37 (2015)

    Article  Google Scholar 

  21. Wang, X., Wei, X., Liu, J., Liu, J., Sun, D., Du, P., Ping, A.: Study on the aqueous two-phase systems composed of surfactant, ionic liquid and water. Fluid Phase Equilib. 347, 1–7 (2013)

    Article  Google Scholar 

  22. Kothencz, R., Nagy, R., Bartha, L., Tóth, J., Vágó, Á.: Analysis of the interaction between polymer and surfactant in aqueous solutions for chemical-enhanced oil recovery. Part. Sci. Technol. 36, 887–890 (2018)

    Article  CAS  Google Scholar 

  23. Dominguez, C.M., Romero, A., Santos, A.: Selective removal of chlorinated organic compounds from lindane wastes by combination of nonionic surfactant soil flushing and Fenton oxidation. Chem. Eng. J. 376, 120009 (2019)

    Article  CAS  Google Scholar 

  24. Lee, N.R., Cortes-Clerget, M., Wood, A.B., Lippincott, D.J., Pang, H., Moghadam, F.A., Gallou, F., Lipshutz, B.H.: Coolade. A low-foaming surfactant for organic synthesis in water. ChemSusChem 12, 3159–3165 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, M., He, H., Dai, C., Wu, X., Zhang, Y., Huang, Y., Gu, C.: Micelle formation by amine-based CO2-responsive surfactant of imidazoline type in an aqueous solution. J. Mol. Liq. 268, 875–881 (2018)

    Article  CAS  Google Scholar 

  26. Zhao, Y., Wang, J., Deng, L., Zhou, P., Wang, S., Wang, Y., Xu, H., Lu, J.R.: Tuning the self-assembly of short peptides via sequence variations. Langmuir 29, 13457–13464 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. Sarkar, M., Poddar, S.: Studies on the interaction of surfactants with cationic dye by absorption spectroscopy. J. Colloid Interface Sci. 221, 181–185 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Asadzadeh Shahir, A., Javadian, S., Razavizadeh, B.B.M., Gharibi, H.: Comprehensive study of tartrazine/cationic surfactant interaction. J. Phys. Chem. B 115, 14435–14444 (2011)

    Article  Google Scholar 

  29. Shahir, A.A., Rashidi-Alavijeh, M., Javadian, S., Kakemam, J., Yousefi, A.: Molecular interaction of Congo Red with conventional and cationic gemini surfactants. Fluid Phase Equilib. 305, 219–226 (2011)

    Article  CAS  Google Scholar 

  30. Karukstis, K.K., Savin, D.A., Loftus, C.T., D’Angelo, N.D.: Spectroscopic studies of the interaction of methyl orange with cationic alkyltrimethylammonium bromide surfactants. J. Colloid Interface Sci. 203, 157–163 (1998)

    Article  CAS  Google Scholar 

  31. Minch, M.J., Shah, S.S.: Spectroscopic studies of hydrophobic association. Merocyanine dyes in cationic and anionic micelles. J. Org. Chem. 44, 3252–3255 (1979)

    Article  CAS  Google Scholar 

  32. Gohain, B., Saikia, P.M., Sarma, S., Bhat, S.N., Dutta, R.K.: Hydrophobicity-induced deprotonation of dye in dye–submicellar surfactant systems. Phys. Chem. Chem. Phys. 4, 2617–2620 (2002)

    Article  CAS  Google Scholar 

  33. Rashidi-Alavijeh, M., Javadian, S., Gharibi, H., Moradi, M., Tehrani-Bagha, A.R., Shahir, A.A.: Intermolecular interactions between a dye and cationic surfactants: effects of alkyl chain, head group, and counterion. Colloids Surf. A 380, 119–127 (2011)

    Article  CAS  Google Scholar 

  34. Micheau, J.C., Zakharova, G.V., Chibisov, A.K.: Reversible aggregation, precipitation and re-dissolution of rhodamine 6G in aqueous sodium dodecyl sulfateElectronic supplementary information (ESI) available: (1) R6G dimerization in aqueous solution: (a) determination of the equilibrium constant, (b) re. Phys. Chem. Chem. Phys. 6, 2420 (2004)

    Article  CAS  Google Scholar 

  35. Prakash, O.: Sensitive spectrophotometric method for trace amounts of uranium. Talanta 26, 1167–1169 (1979)

    Article  CAS  PubMed  Google Scholar 

  36. Brac̆ko, S., Špan, J.: Anionic dye–cationic surfactant interactions in water–ethanol mixed solvent. Dye. Pigment. 50, 77–84 (2001)

    Article  Google Scholar 

  37. Nemoto, Y., Funahashi, H.: The interaction between dyes and nonionic surfactants: the mode of action on nonionic surfactants in dyeing. Ind. Eng. Chem. Prod. Res. Dev. 19, 136–142 (1980)

    Article  CAS  Google Scholar 

  38. Malovikova, A., Hayakawa, K., Kwak, J.C.T.: Surfactant-polyelectrolyte interactions. 4. Surfactant chain length dependence of the binding of alkylpyridinium cations to dextran sulfate. J. Phys. Chem. 88, 1930–1933 (1984)

    Article  CAS  Google Scholar 

  39. Liu, W., Guo, R.: The interaction between morin and CTAB aggregates. J. Colloid Interface Sci. 290, 564–573 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. De, S., Das, S., Girigoswami, A.: Environmental effects on the aggregation of some xanthene dyes used in lasers. Spectrochim. Acta Part A 61, 1821–1833 (2005)

    Article  Google Scholar 

  41. Suradkar, Y.R., Bhagwat, S.S.: CMC determination of an odd carbon chain surfactant (C 13 E 20) mixed with other surfactants using a spectrophotometric technique. J. Chem. Eng. Data 51, 2026–2031 (2006)

    Article  CAS  Google Scholar 

  42. Sreethawong, T., Junbua, C., Chavadej, S.: Photocatalytic H2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO2 nanocrystal photocatalyst. J. Power. Sources 190, 513–524 (2009)

    Article  CAS  Google Scholar 

  43. Seret, A., Van de Vorst, A.: Solubility properties of Eosin Y and Rose Bengal triplet state in sodium dodecyl sulfate micellar solutions. J. Phys. Chem. 94, 5293–5299 (1990)

    Article  CAS  Google Scholar 

  44. Abou-Sekkina, M.M.: Exploration of a cuprate superconductor YBa2Cu3O7 as a catalyst and industrial antipollutant. Mater. Lett. 42, 297–304 (2000)

    Article  CAS  Google Scholar 

  45. Valeur, B., Brochon, J.C.: New Trends in Fluorescence Spectroscopy, 6th edn. Springer Press, Berlin (1999)

    Google Scholar 

  46. Lackowicz, J.R.: Principle of Fluorescence Spectroscopy. Plenum Press, New York (1983)

    Book  Google Scholar 

  47. Peyre, V., Bouguerra, S., Testard, F.: Micellization of dodecyltrimethylammonium bromide in water–dimethylsulfoxide mixtures: a multi-length scale approach in a model system. J. Colloid Interface Sci. 389, 164–174 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. Warsi, F., Islam, M.R., Alam, M.S., Ali, M.: Exploring the effect of hydrophobic ionic liquid on aggregation, micropolarity and microviscosity properties of aqueous SDS solutions. J. Mol. Liq. 310, 113132 (2020)

    Article  CAS  Google Scholar 

  49. Phillips, J.N.: The energetics of micelle formation. Trans. Faraday Soc. 51, 561–569 (1955)

    Article  CAS  Google Scholar 

  50. Carpena, P., Aguiar, J., Bernaola-Galván, P., Carnero Ruiz, C.: Problems associated with the treatment of conductivity−concentration data in surfactant solutions: simulations and experiments. Langmuir 18, 6054–6058 (2002)

    Article  CAS  Google Scholar 

  51. Rosen, M.J.: Surfactants and Interfacial Phenomena. Wiley, Hoboken (2004)

    Book  Google Scholar 

  52. Jungnickel, C., Łuczak, J., Ranke, J., Fernández, J.F., Müller, A., Thöming, J.: Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf. A 316, 278–284 (2008)

    Article  CAS  Google Scholar 

  53. Oremusová, J.: Micellization of alkyl trimethyl ammonium bromides in aqueous solutions—part 1: critical micelle concentration (CMC) and ionization degree. Tenside Surfactants Deterg. 49, 231–240 (2012)

    Article  Google Scholar 

  54. Mehta, S.K., Bhasin, K.K., Chauhan, R., Dham, S.: Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf. A 255, 153–157 (2005)

    Article  CAS  Google Scholar 

  55. Zha, J.-P., Zhu, M.-T., Qin, L., Wang, X.-H.: Study of interaction between ionic liquids and orange G in aqueous solution with UV-vis spectroscopy and conductivity meter. Spectrochim Acta Part A 196, 178–184 (2018)

    Article  CAS  Google Scholar 

  56. Chen, L.-J., Lin, S.-Y., Huang, C.-C., Chen, E.-M.: Temperature dependence of critical micelle concentration of polyoxyethylenated non-ionic surfactants. Colloids Surf. A 135, 175–181 (1998)

    Article  CAS  Google Scholar 

  57. Bakshi, M.S.: Micelle formation by sodium dodecyl sulfate in water-additive systems. Bull. Chem. Soc. Jpn 69, 2723–2729 (1996)

    Article  CAS  Google Scholar 

  58. Gohain, B., Dutta, R.K.: Premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions: deprotonation of dye in ion pair micelles. J. Colloid Interface Sci. 323, 395–402 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. Frahm, J., Diekmann, S., Haase, A.: Electrostatic properties of ionic micelles in aqueous solutions. Berichte Der Bunsengesellschaft Für Phys. Chemie. 84, 566–571 (1980)

    Article  CAS  Google Scholar 

  60. Hajy Alimohammadi, M., Javadian, S., Gharibi, H., reza Tehrani-Bagha, A., Alavijeh, M.R., Kakaei, K.: Aggregation behavior and intermicellar interactions of cationic Gemini surfactants: effects of alkyl chain, spacer lengths and temperature. J. Chem. Thermodyn. 44, 107–115 (2012)

    Article  CAS  Google Scholar 

  61. Galgano, P.D., El Seoud, O.A.: Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. J. Colloid Interface Sci. 345, 1–11 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. Zana, R.: Ionization of cationic micelles: effect of the detergent structure. J. Colloid Interface Sci. 78, 330–337 (1980)

    Article  CAS  Google Scholar 

  63. Rosen, M.J., Kunjappu, J.T.: Surfactants and interfacial phenomena. Wiley, New York (2012)

    Book  Google Scholar 

  64. Ali, A., Uzair, S., Malik, N.A., Ali, M.: Study of interaction between cationic surfactants and cresol red dye by electrical conductivity and spectroscopy methods. J. Mol. Liq. 196, 395–403 (2014)

    Article  CAS  Google Scholar 

  65. Göktürk, S., Tunçay, M.: Spectral studies of safranin-O in different surfactant solutions. Spectrochim Acta Part A 59, 1857–1866 (2003)

    Article  Google Scholar 

  66. Göktürk, S.: Effect of hydrophobicity on micellar binding of carminic acid. J. Photochem. Photobiol. A Chem. 169, 115–121 (2005)

    Article  Google Scholar 

  67. Erdainç, N., Göktürk, S., Tunçay, M.: Interaction of epirubicin HCl with surfactants: effect of NaCl and glucose. J. Pharm. Sci. 93, 1566–1576 (2004)

    Article  Google Scholar 

  68. Erdinc, N., Göktürk, S.: Spectrophotometric and conductometric studies on the interaction of anionic dye eosin-Y with cationic micelles. Anal. Chem. Lett. 4, 146–157 (2014)

    Article  CAS  Google Scholar 

  69. Warsi, F., Islam, M.R., Khan, M.A., Osama, M., Ali, M.: Delineating molecular interactions within Surface Active Ionic Liquids + Tartrazine dye solutions: a comparative study with conventional surfactant-DTAC. J. Mol. Struct. 1260, 132798 (2022)

    Article  CAS  Google Scholar 

  70. Chakraborty, M., Panda, A.K.: Spectral behaviour of eosin Y in different solvents and aqueous surfactant media. Spectrochim. Acta Part A 81, 458–465 (2011)

    Article  CAS  Google Scholar 

  71. Patra, N., Mandal, B., Ghosh, S.: Spectroscopic studies on the interaction of dye and surface active ionic liquid. Ind. Eng. Chem. Res. 56, 10044–10052 (2017)

    Article  CAS  Google Scholar 

  72. Sahoo, D., Bhattacharya, P., Chakravorti, S.: Quest for mode of binding of 2-(4-(dimethylamino) styryl)-1-methylpyridinium iodide with calf thymus DNA. J. Phys. Chem. B 114, 2044–2050 (2010)

    Article  CAS  PubMed  Google Scholar 

  73. Maltas, E.: Binding interactions of niclosamide with serum proteins. J. Food Drug Anal. 22, 549–555 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharma, R.N., Pancholi, S.S.: Protein binding interaction study of olmesartan medoxomil and its metabolite olmesartan by fluorescence spectroscopy. Int J Pharm Pharm Sci 6, 726–729 (2014)

    CAS  Google Scholar 

  75. Anand, U., Mukherjee, S.: Reversibility in protein folding: effect of β-cyclodextrin on bovine serum albumin unfolded by sodium dodecyl sulphate. Phys. Chem. Chem. Phys. 15, 9375–9383 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is generously supported by Non-NET fellowship (UGC) to FW, UGC start-up grant to M Ali, and departmental facility by UGC, SAP, DRS II, FIST-DST.

Author information

Authors and Affiliations

Authors

Contributions

Faiz Warsi: Conceptualization, Data curation, Writing–original draft, Investigation, Writing review & editing. Sameer Shakeel Ansari: Data curation, Writing original draft, Investigation. Maroof Ali: Methodology, Software, Data curation, Writing original draft, Investigation, Supervision. Abbul Bashar Khan: Writing review & editing.

Corresponding author

Correspondence to Maroof Ali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 570 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warsi, F., Ansari, S.S., Khan, A.B. et al. Revealing the Molecular Interaction of Surface Active Ionic Liquids [C8mim][Cl] and [C10mim][Cl] with Anionic Dye Eosin Yellow: A Comparative Study with Analogous Cationic Surfactants. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01371-x

Keywords

Navigation