Skip to main content

Advertisement

Log in

The Interaction between Xanthan Gum and Bovine Serum Albumin was Studied by Multispectral Method and Molecular Docking Simulation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The interaction mechanism between xanthan gum (XG) and bovine serum albumin (BSA) was studied by various spectral and molecular docking techniques. The fluorescence spectrum analysis reveals that XG and BSA are quenched, with XG quenching BSA in a static manner according to the Stern-Volmer equation. The Vant’s Hoff equation indicates negative values for the thermodynamic parameters ΔH, ΔG, and ΔS during the binding process. Therefore, it can be concluded that hydrogen bonding and van der Waals forces dominate the interaction between XG and BSA, resulting in a spontaneous and exothermic quenching process. The results of molecular docking simulation show that hydrogen bond and van der Waals force are the main forces between XG and BSA. Through multispectral analysis, it is observed that XG affects the microenvironment of BSA by increasing its polarity and hydrophilicity while weakening its hydrophobicity. This leads to changes in the secondary structure of BSA molecules. The binding distance between XG and BSA is calculated to demonstrate energy transfer between them, and overlap integral calculations confirm the presence of non-radiative energy transfer from XG to BSA. Analysis of the circular dichroism spectrum reveals that interaction between BSA and XG leads to protein relaxation, a decrease in α-helix structure, and an increase in β-sheet structure, providing further evidence for alterations in the secondary structure of BSA. Through the study of the interaction between XG and BSA, the interaction mechanism of both is analyzed, which provides data support for their future discussion and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No data were generated or analyzed in the presented research.

References

  1. Reza, T., Nazanin, H., Yasaman, R., Sara, N., Farzaneh, S., Zeinab, A.-T., Reza, S.M., Jamshidkhan, C.: Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq. 368, 120826 (2022). https://doi.org/10.1016/J.MOLLIQ.2022.120826

    Article  Google Scholar 

  2. Atena, S.R., Jamshid, M., Majid, D., Reza, S.M., Jamshidkhan, C.: Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn. 39, 1029–1043 (2021). https://doi.org/10.1080/07391102.2020.1724568

    Article  CAS  Google Scholar 

  3. Bozyigit, I., Javadi, A., Altun, S.: Strength properties of xanthan gum and guar gum treated kaolin at different water contents. J. Rock. Mech. Geotech. 13, 1160–1172 (2021). https://doi.org/10.1016/j.jrmge.2021.06.007

    Article  Google Scholar 

  4. Luo, Y., Li, J., Ding, Q., Wang, H., Liu, C., Wu, J.: Functionalized Hydrogel-based Wearable Gas and Humidity Sensors. Nano-Micro Lett. 15, 111–155 (2023). https://doi.org/10.1007/s40820-023-01099-1

    Article  ADS  CAS  Google Scholar 

  5. Komal, R., Talat, R., Sabahat, A., Anam, R., Ghulam, A., Muhammad, I., Tooba, J., Jasra, G., Munawar, H., Bushra, S., Shaheen, S., Raza, S.M.: Bergenin loaded gum xanthan stabilized silver nanoparticles suppress synovial inflammation through modulation of the immune response and oxidative stress in adjuvant induced arthritic rats. J. Mater. Chem. B 6, 4486–4501 (2018). https://doi.org/10.1039/c8tb00672e

    Article  CAS  Google Scholar 

  6. Ying, Z.C., Xin, P., Jun, R.H., Wei, Q., Xin, S.R., Min, H.Z.: Spectroscopic studies on the interaction between salvianolic acid B and bovine serum albumin. Spectroscopy and spectral analysis 41, 101881 (2021). https://doi.org/10.1016/J.REDOX.2021.101881

    Article  Google Scholar 

  7. Xiaoliu, L., Luguang, L., Bodeng, W., Xin, Z., Xiaoman, Z., Yurong, D., Bin, P., Xiuming, Z., Lei, Z.: Effect of the R126C mutation on the structure and function of the glucose transporter GLUT1: A molecular dynamics simulation study. J. Mol. Graphics Modell. 116, 108227–108227 (2022). https://doi.org/10.1016/J.JMGM.2022.108227

    Article  Google Scholar 

  8. Shang, L., Jiang, X., Yang, T., Xu, H., Xie, Q., Hu, M., Yang, C., Kong, L., Zhang, Z.: Enhancing cancer chemo-immunotherapy by biomimetic nanogel with tumor targeting capacity and rapid drug-releasing in tumor microenvironment. Acta Pharm. Sin B. 12, 2550–2567 (2022). https://doi.org/10.1016/j.apsb.2021.11.004

    Article  CAS  PubMed  Google Scholar 

  9. Ye, L., Hongrui, L., Chunyu, M., Jiali, G., Chun, L.: Probing the interaction between encapsulated ethoxyquin and its β-cyclodextrin inclusion complex with bovine serum albumin. Spectrochim. Acta, Part A. 304, 123259–123259 (2023). https://doi.org/10.1016/J.SAA.2023.123259

    Article  Google Scholar 

  10. Chamani, J., Moosavi-Movahedi, A.A., Saboury, A.A., Gharanfoli, M., Hakimelahi, G.H.: Calorimetric indication of the molten globule-like state of cytochrome c induced by n-alkyl sulfates at low concentrations. J. Chem. Thermodyn. 35, 199–207 (2003). https://doi.org/10.1016/s0021-9614(02)00312-9

    Article  CAS  Google Scholar 

  11. Omidvar, Z., Asoodeh, A., Chamani, J.: Studies on the antagonistic behavior between cyclophosphamide hydrochloride and aspirin with human serum albumin: Time-resolved fluorescence spectroscopy and isothermal titration calorimetry. J Solut. Chem. 42, 1005–1017 (2013). https://doi.org/10.1007/s10953-013-0009-7

    Article  CAS  Google Scholar 

  12. Abdollahpour, N., Asoodeh, A., Saberi, M.R., Chamani, J.: Separate and simultaneous binding effects of aspirin and amlodipine to human serum albumin based on fluorescence spectroscopic and molecular modeling characterizations: A mechanistic insight for determining usage drugs doses. J. Lumin. 131, 1885–1899 (2011). https://doi.org/10.1016/j.jlumin.2011.04.043

    Article  CAS  Google Scholar 

  13. Hamid, M., Fatemeh, H., Niloofar, S., Elahe, K., Bizhan, M.-N., Parisa, M., Jamshidkhan, C.: Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J. Mol. Struct. 1269, 133803 (2022). https://doi.org/10.1016/J.MOLSTRUC.2022.133803

    Article  Google Scholar 

  14. Fateme, K., Helya, Y., Fatemeh, K., Negar, H., Parisa, M., Sare, H., Jamshidkhan, C.: Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. Pericarp: A perspective of cholesterol lowering. Luminescence. 37, 1836–1845 (2022). https://doi.org/10.1002/BIO.4360

    Article  Google Scholar 

  15. Hosseinzadeh, M., Nikjoo, S., Zare, N., Delavar, D., Beigoli, S., Chamani, J.: Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches. Res. Chem. Intermed. 45, 401–423 (2019). https://doi.org/10.1007/s11164-018-3608-5

    Article  CAS  Google Scholar 

  16. Bani-Yaseen, A.D.: Spectrofluorimetric study on the interaction between antimicrobial drug sulfamethazine and bovine serum albumin. J. Lumin. 131, 1042–1047 (2011). https://doi.org/10.1016/j.jlumin.2011.01.019

    Article  CAS  Google Scholar 

  17. Santos, J., Alcaide-González, M.A., Trujillo-Cayado, L.A., Carrillo, F., Alfaro-Rodríguez, M.C.: Development of food-grade pickering emulsions stabilized by a biological macromolecule (xanthan gum) and zein. Int. J. Biol. Macromol. 153, 747–754 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.078

    Article  CAS  PubMed  Google Scholar 

  18. Matsuyama, S., Kazuhiro, M., Nakauma, M., Funami, T., Nambu, Y., Matsumiya, K., Matsumura, Y.: Stabilization of whey protein isolate-based emulsions via complexation with xanthan gum under acidic conditions. Food Hydrocoll. 111, 106365 (2020). https://doi.org/10.1016/j.foodhyd.2020.106365

    Article  CAS  Google Scholar 

  19. Sijia, G., Xuefeng, S., Jiangxia, Z., Ruitong, D., Junying, L., Guiyun, X., Xingmin, L.: Effect of Xanthan Gum, Kappa–Carrageenan, and Guar Gum on the functional characteristics of Egg White Liquid and Intermolecular Interaction mechanism. Foods. 11, 2119–2119 (2022). https://doi.org/10.3390/FOODS11142119

    Article  Google Scholar 

  20. Marcela, V.E., Karina, B., S., R.R., Dupas, H.M.: Effect of pH and pea protein: Xanthan gum ratio on emulsions with high oil content and high internal phase emulsion formation. Molecules. 26, 5646–5646 (2021). https://doi.org/10.3390/MOLECULES26185646

    Article  Google Scholar 

  21. Eslami-Farsani, R., Shareghi, B., Farhadian, S., Momeni, L.: Insight into the binding of glycerol with myoglobin: Spectroscopic and MD simulation approach. Int. J. Biol. Macromol. 159, 433–443 (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.065

    Article  CAS  PubMed  Google Scholar 

  22. Fatemeh, H.-S., Behzad, S., Sadegh, F.: Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. J. Mol. Liq. 341, 117317 (2021). https://doi.org/10.1016/J.MOLLIQ.2021.117317

    Article  Google Scholar 

  23. Majid, A.A.S.A., Hussain, A.W.F.A., Sonam, S., Hamza, H., Abdulwahab, A., Omar, A., A., A.A.S.A.H., I., F.R., Abdullah, A.A., M., R.B., S., R.M., Ahmed, G.: Enhancement of Haloperidol binding Affinity to dopamine receptor via forming a charge-transfer complex with Picric Acid and 7,7,8,8-Tetracyanoquinodimethane for improvement of the antipsychotic efficacy. Molecules. 27, 3295–3295 (2022). https://doi.org/10.3390/MOLECULES27103295

    Article  Google Scholar 

  24. Salih, R.H.H., Hasan, A.H., Hussein, A.J., Samad, M.K., Shakya, S., Jamalis, J., Hawaiz, F.E., Pratama, M.R.F.: One-pot synthesis, molecular docking, ADMET, and DFT studies of novel pyrazolines as promising SARS-CoV-2 main protease inhibitors. Res. Chem. Intermed. 48, 4729–4751 (2022). https://doi.org/10.1007/s11164-022-04831-5

    Article  CAS  Google Scholar 

  25. Zohreh, M., Azadeh, R., Tahmineh, S., Parisa, M., Zeinab, A., Jamshidkhan, C.: Molecular Dynamics and Multi-spectroscopic of the Interaction behavior between bladder Cancer cells and calf Thymus DNA with Rebeccamycin: Apoptosis through the Down Regulation of PI3K/AKT signaling pathway. J. Fluoresc. 33, 1537–1557 (2023). https://doi.org/10.1007/S10895-023-03169-4

    Article  Google Scholar 

  26. Gehlen, M.H.: The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol C. 42, 100338–100338 (2020). https://doi.org/10.1016/j.jphotochemrev.2019.100338

    Article  CAS  Google Scholar 

  27. Rajan, P., Neha, M., Din, P.M.U., Nida, F., Abrar, S., Lata, V.K., Neeraj, D.: Esterase activity and conformational changes of bovine serum albumin toward interaction with mephedrone: Spectroscopic and computational studies. J. Mol. Recognit. 31, e2734 (2018). https://doi.org/10.1002/jmr.2734

    Article  CAS  Google Scholar 

  28. Yasmeen, S., Riyazuddeen, G., Rabbani: Calorimetric and spectroscopic binding studies of Amoxicillin with human serum albumin. J. Therm. Anal. Calorim. 127, 1445–1455 (2017). https://doi.org/10.1007/s10973-016-5555-y

    Article  CAS  Google Scholar 

  29. A, M.-M.A., H, C.J.G., H, S., M, S.C.: Electrochemical evidence for the molten globule states of cytochrome c induced by N-alkyl sulfates at low concentrations. J. Protein Chem. 22, 23–30 (2003). https://doi.org/10.1023/A:1023011609931

    Article  Google Scholar 

  30. Neeraj, D., Bashar, K.A., Neha, M., Sonu, T., Fareeda, A., Prashant, S., Rajan, P.: An insight into the binding of aceclofenac with bovine serum albumin at physiological condition: A spectroscopic and computational approach. J. Biomol. Struct. Dyn. 36, 398–406 (2018). https://doi.org/10.1080/07391102.2017.1278722

    Article  CAS  Google Scholar 

  31. Mahmoudpour, M., Javaheri-Ghezeldizaj, F., Yekta, R., Torbati, M., Dolatabadi, J.: Thermodynamic analysis of albumin interaction with monosodium glutamate food additive: Insights from multi-spectroscopic and molecular docking approaches. J. Mol. Struct. 1221, 128785 (2020). https://doi.org/10.1016/j.molstruc.2020.128785

    Article  CAS  Google Scholar 

  32. Shama, Y., Riyazuddeen, Samima, Khatun, Faizan, A., Qais: Characterization of interactions between cromolyn sodium and bovine serum albumin by spectroscopic, calorimetric and computational methods. J. Biomol. Struct. Dyn. 38, 722–732 (2019). https://doi.org/10.1080/07391102.2019.1586588

    Article  CAS  Google Scholar 

  33. Dwivedi, A., Srivastava, M., Dwivedi, A., Srivastava, A., Mishra, A., Srivastava, S.K.: Synthesis and enhanced photoluminescence properties of red emitting divalent ion(Ca2+)doped Eu:Y2O3 nanophosphors for optoelectronic applications. J. Rare Earths. 40, 1187–1198 (2022). https://doi.org/10.1016/j.jre.2021.11.001

    Article  CAS  Google Scholar 

  34. Hervé, G.: Analytic equation of state for Mie(α, β) fluids based on an improved Ross variation perturbation theory. J. Mol. Liq. 323, 115053 (2021). https://doi.org/10.1016/j.molliq.2020.115053

    Article  CAS  Google Scholar 

  35. Patel, R., Kumari, M., Dohare, N., Khan, A.B., Singh, P., Malik, M.A., Kumar, A.: Interaction between pyrrolidinium based ionic liquid and bovine serum albumin: a spectroscopic and molecular docking insight. Biochem. Anal. Biochem. 5, 1000265 (2016). https://doi.org/10.4172/2161-1009.1000265

    Article  CAS  Google Scholar 

  36. Hasanzadeh, A., Dehghan, G., Shaghaghi, M., Panahi, Y., Jouyban, A., Yekta, R.: Multispectral and molecular docking studies on the interaction of human serum albumin with iohexol. J. Mol. Liq. 248, 459–467 (2017). https://doi.org/10.1016/j.molliq.2017.10.096

    Article  CAS  Google Scholar 

  37. Rajan, P., Birajpal, S., Anurag, S., Juhi, S., Neeraj, D., din, P.M., Abrar, S.M., M., A.A., Ali, K.A.: Interaction and esterase activity of albumin serums with orphenadrine: A spectroscopic and computational approach. J. Mol. Struct. 1239, 130522 (2021). https://doi.org/10.1016/J.MOLSTRUC.2021.130522

    Article  Google Scholar 

  38. Rajan, P., Birajpal, S., Anurag, S., Ahmad, W.F., Abrar, S.M., Aashima, A., Ahmad, M.M., Ahmed, A.S., Imran, K.: A biophysical approach to study the impact of muscle relaxant drug tizanidine on stability and activity of serum albumins. J. Mol. Recognit. 36, e3010 (2023). https://doi.org/10.1002/JMR.3010

    Article  Google Scholar 

Download references

Funding

Corresponding author at: Inner Mongolia Engineering Research Center of Comprehensive Utilization of Bio-coal Chemical Industry and School of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, 014010,China

Author information

Authors and Affiliations

Authors

Contributions

J.S. is responsible for data processing, as well as writing, reviewing, and editing articles. X.W. is in charge of providing experimental methods, securing funding, managing projects, and conducting article reviews and revisions. Z.N., L.M., H.Z., J.C., Y.L., and J.D. are involved in reviewing experimental protocols, supervising experimental procedures, and overseeing troubleshooting in experiments.

Corresponding author

Correspondence to Xiaoxia Wang.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

No studies involving human or animal subjects were conducted in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, X., Nie, Z. et al. The Interaction between Xanthan Gum and Bovine Serum Albumin was Studied by Multispectral Method and Molecular Docking Simulation. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01368-6

Keywords

Navigation