Skip to main content

Advertisement

Log in

Volumetric and Dielectric Properties in Liquid Phase of Dimethyl Ether–Ethanol at (293.2–313.2) K and 1.00 MPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Density and dielectric spectra have been measured in the liquid phase of dimethyl ether (DME)–ethanol by an oscillating U-tube densimeter and a complex dielectric spectrometer under 1.00 MPa. The density was measured at 303.15 and 313.15 K and converted to the excess molar volume. The excess molar volumes were no smaller than − 0.880 and − 0.909 cm3·mol–1 at 303.15 and 313.15 K, respectively. The mole fraction dependence can be correlated with the Redlich–Kister equation, whose minimum was found to be around 0.58 for the mole fraction of DME. The dielectric constant and the dielectric relaxation time were evaluated from the complex dielectric spectra in the frequency range from 0.5 to 18 GHz at (293.2–313.2) K and 1.00 MPa. The dielectric constants and the relaxation time were decreased with the mole fraction of DME, and the latter tended to be around 25 ps in the mole fraction range higher than 0.6. The logarithmic dielectric constants can be correlated with a similar function to the Hildebrand equation with the volume fraction. The effective Kirkwood g-factor was evaluated at 293.2–313.2 K and 1.00 MPa. The g-factors were given by two linear functions crossed around 0.6 for the mole fraction of DME. Considering an atomic composition (C2H6O), the molecular sizes are not so different for DME and ethanol. Then, the solution structure was thought to be microscopically changed around 0.6 for the mole fraction of DME. The mole fraction will be utilized to switch the solubility to extract amphipathic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sato, T., Buchner, R.: Dielectric relaxation process in ethanol/water mixtures. J. Phys. Chem. A 108, 5007–5015 (2004). https://doi.org/10.1021/jp035255o

    Article  CAS  Google Scholar 

  2. Harvey, A.H., Prausnitz, J.M.: Dielectric constants of fluid mixtures over a wide range of temperature and density. J. Solution Chem. 16, 857–869 (1987). https://doi.org/10.1007/BF00650755

    Article  CAS  Google Scholar 

  3. Holldorff, H., Knapp, H.: Vapor pressures of n-butane, dimethyl ether, methyl chloride, methanol and the vapor-liquid equilibrium of dimethyl ether - methanol: experimental apparatus, results and data reduction. Fluid Phase Equilib. 40, 113–125 (1988). https://doi.org/10.1016/0378-3812(88)80024-4

    Article  CAS  Google Scholar 

  4. Lide, D.R.: CRC Handbook of Chemistry and Physics, 84th edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  5. Buckly, F., Mariot, A.A.: Influence of molecular shape on the dielectric constant of polar liquids. J. Res. Natl. Bur. Stand. 53, 229–244 (1954). https://doi.org/10.6028/jres.053.030

    Article  Google Scholar 

  6. Dannhauser, W., Bahe, L.W.: Dielectric constant of hydrogen bonded liquids. III. Superheated alcohols. J. Chem. Phys. 40, 3058–3066 (1964). https://doi.org/10.1063/1.1724948

    Article  ADS  CAS  Google Scholar 

  7. Yokoi, D., Hoshina, T., Tsuji, T., Hiaki, T., Tomida, D., Qiao, K., Yokoyama, C.: Measurement and correlation of solid–liquid equilibria for three binaries, ethanol–antipyrine, chloroform–antipyrine, and dimethyl ether–antipyrine. Fluid Phase Equilib. 420, 14–19 (2016). https://doi.org/10.1016/j.fluid.2015.11.035

    Article  CAS  Google Scholar 

  8. Jonasson, A., Persson, O., Fredenslund, A.: High pressure solubility of carbon dioxide and carbon monoxide in dimethyl ether. J. Chem. Eng. Data 40, 296–300 (1995). https://doi.org/10.1021/je00017a066

    Article  CAS  Google Scholar 

  9. Wu, J., Liu, Z., Pan, J., Zhao, X.: Vapor pressure measurements of dimethyl ether from (233 to 399) K. J. Chem. Eng. Data 49, 32–34 (2004). https://doi.org/10.1021/je0340046

    Article  CAS  Google Scholar 

  10. Tsuji, T., Hoshina, T., Takagi, T.: P-V-T relationship/saturated vapor pressure of dimethyl ether (DME) as an alternative for liquefied petroleum gas and determination of 8 constants in the Bernedict-Webb-Rubin (BWR) equation of state: measurement and prediction of thermophysical properties for dimethyl ether with liquefied petroleum gas contents (Part 1). J. Jpn. Petrol. Inst. 63, 107–122 (2020). https://doi.org/10.1627/jpi.63.107

    Article  CAS  Google Scholar 

  11. Hoshina, T., Ohya, K., Akiba, J., Tsuji, T., Hiaki, T.: Volumetric behavior of dimethyl ether liquid mixture at 20 °C under high pressure. Rev. High Press. Sci. Tech. 23, 319–324 (2013). https://doi.org/10.4131/jshpreview.23.319

    Article  Google Scholar 

  12. Hoshina, T., Kasahara, K., Tsuji, T., Sato, Y., Inomata, H.: Dielectric properties of dimethyl ether + ethanol liquid mixture at 293.2 K. Kagaku Kogaku Ronbunshu 39, 267–271 (2013). https://doi.org/10.1252/kakoronbunshu.39.267

    Article  CAS  Google Scholar 

  13. Nakazawa, M., Tsuji, T., Lai, A.J.X., Zaini, N., Hoshina, T., Otake, K., Yoshida, A.: Bubble point pressures of binary mixtures of ethanol with propane, dimethyl ether or trans-1,3,3,3-tetrafluoropropene and correlation with equations of state and Wong-Sandler mixing rules. Fluid Phase Equilib. 522, 112764 (2020). https://doi.org/10.1016/j.fluid.2020.112764

    Article  CAS  Google Scholar 

  14. Koshiba, Y., Hoshina, T., Okada, M., Tsuji, T., Hiaki, T.: Bubble point pressure and some dielectric properties of propane + ethanol liquid mixture at 303.2 K. Kagaku Kogaku Ronbunshu 44, 223–228 (2018). https://doi.org/10.1252/kakoronbunshu.44.223

    Article  CAS  Google Scholar 

  15. Elbaccouch, M.M., Elliott, J.R.: High-pressure vapor−liquid equilibrium for dimethyl ether + ethanol and dimethyl ether + ethanol + water. J. Chem. Eng. Data 45, 1080–1087 (2000). https://doi.org/10.1021/je000109m

    Article  CAS  Google Scholar 

  16. Park, S.-J., Han, K.-J., Gmehling, J.: Vapor-liquid equilibria and HE for binary systems of dimethyl ether (DME) with C1–C4 alkan-1-ols at 323.15 K and liquid-liquid equilibria for ternary system of DME + methanol + water at 313.15 K. J. Chem. Eng. Data 52, 230–234 (2007). https://doi.org/10.1021/je0603574

    Article  CAS  Google Scholar 

  17. Dahlhoff, G., Pfennig, A., Hammer, H., van Oorschot, M.: Vapor-liquid equilibria in quaternary mixtures of dimethyl ether + n-butane + ethanol + water. J. Chem. Eng. Data 45, 887–892 (2000). https://doi.org/10.1021/je000002z

    Article  CAS  Google Scholar 

  18. Lee, S.B., Smith, R.L., Inomata, H., Arai, K.: Coaxial probe and apparatus for measuring the dielectric spectra of high pressure liquids and supercritical fluid mixtures. Rev. Sci. Instr. 71, 4226–4230 (2000). https://doi.org/10.1063/1.1321303

    Article  ADS  CAS  Google Scholar 

  19. Franck, E.U., Deul, R.: Dielectric behaviour of methanol and related polar fluids at high pressures and temperatures. Faraday Discuss. Chem. Soc. 66, 191–198 (1978). https://doi.org/10.1039/DC9786600191

    Article  Google Scholar 

  20. Fattepur, R.H., Hosamani, M.T., Deshpande, D.K., Patil, R.L., Mehrotra, S.C.: Dielectric relaxation and related studies of 4-ethylphenolmethanol mixtures using time domain reflectometry. Pramana J. Phys. 44, 33–44 (1995)

    Article  ADS  CAS  Google Scholar 

  21. Hiejima, Y., Yao, M.: Dielectric relaxation of lower alcohols in the whole fluid phase. J. Chem. Phys. 119, 7931–7942 (2003). https://doi.org/10.1063/1.1609981

    Article  ADS  CAS  Google Scholar 

  22. Mohsen-Nia, M., Amiri, H., Jazi, B.: Dielectric constants of water, methanol, ethanol, butanol and acetone: measurement and computational study. J. Solution Chem. 39, 701–708 (2010). https://doi.org/10.1007/s10953-010-9538-5

    Article  CAS  Google Scholar 

  23. Petong, P., Pottel, R., Kaatze, U.: Dielectric relaxation of H-bonded liquids: mixtures of ethanol and n-hexanol at different compositions and temperatures. J. Phys. Chem. A 103, 6114–6121 (1999). https://doi.org/10.1021/jp991046l

    Article  CAS  Google Scholar 

  24. Golubev, I.F., Vasil’kovskaya, T.N., Zolin, V.S.: Experimental study of the density of aliphatic alcohols at various temperatures and pressures. J. Eng. Phys. 38, 399–401 (1980). https://doi.org/10.1007/BF00866470

    Article  Google Scholar 

  25. Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  26. Srinivasan, K.R., Kay, R.L.: Structural considerations from dielectric measurements on the aliphatic alcohols. J. Solution Chem. 4, 299–310 (1975). https://doi.org/10.1007/bf00650388

    Article  CAS  Google Scholar 

  27. Sengwa, R.J., Choudhary, R., Mehrotra, S.C.: Dielectric behaviour of propylene glycol-water mixtures studied by time domain reflectometry. Mol. Phys. 99, 1805–1812 (2001). https://doi.org/10.1080/00268970110072782

    Article  ADS  CAS  Google Scholar 

  28. Pawar, V.P., Mehrotra, S.C.: Dielectric relaxation study of chlorobenzene with formamide at microwave frequency using time domain reflectometry. J. Mol. Liq. 115, 17–22 (2004). https://doi.org/10.1016/j.molliq.2003.12.018

    Article  CAS  Google Scholar 

  29. Chaudhari, A., Chaudhari, H.C., Mehrotra, S.C.: Microwave dielectric characterization of binary mixtures of 3-nitrotoluene with dimethylacetamide, dimethylformamide and dimethylsulphoxide. Bull. Korean Chem. Soc. 25, 1403–1407 (2004). https://doi.org/10.5012/bkcs.2004.25.9.1403

    Article  CAS  Google Scholar 

  30. Jouyban, A., Soltanpour, S., Chan, H.-K.: A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. Int. J. Pharm. 264, 353–360 (2004). https://doi.org/10.1016/j.ijpharm.2003.09.010

    Article  CAS  Google Scholar 

  31. Hildebrand, J.H.: A history of solution theory. Ann. Rev. Phys. Chem. 32, 1–24 (1981). https://doi.org/10.1146/annurev.pc.32.100181.000245

    Article  ADS  CAS  Google Scholar 

  32. Chaudhari, A., More, N.M., Mehrotra, S.C.: Static dielectric constant and Relaxation time for the binary mixture of water, ethanol, N,N-dimethylformamide, dimethylsulphoxide, and N, N-dimethylacetamide with 2-methoxyethanol. Bull. Korean Chem. Soc. 22, 357–361 (2001). https://doi.org/10.5012/bkcs.2001.22.4.357

    Article  CAS  Google Scholar 

  33. Kumbharkhane, A.C., Puranik, S.M., Mehrotra, S.C.: Dielectric relaxation studies of aqueous N,N’-dimethylformamide using a picosecond time domain technique. J. Solution Chem. 22, 219–229 (1993). https://doi.org/10.1007/BF00649245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge university resources for support of this project.

Funding

The authors declare no financial support in this study.

Author information

Authors and Affiliations

Authors

Contributions

TH, KS, TT, and TH wrote the main manuscript. MO and KS analyzed experimental data and prepared all table and figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Taka-aki Hoshina.

Ethics declarations

Competing Interests

The authors declare no competing interests in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshina, Ta., Sato, K., Okada, M. et al. Volumetric and Dielectric Properties in Liquid Phase of Dimethyl Ether–Ethanol at (293.2–313.2) K and 1.00 MPa. J Solution Chem 53, 278–293 (2024). https://doi.org/10.1007/s10953-023-01329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01329-5

Keywords

Navigation