Skip to main content
Log in

Investigations on the Thermophysical Properties of Binary Systems of Fatty Acid Esters + Dimethyl Carbonate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Carbonate esters are used as additives in biodiesel to improve its thermophysical properties for better applicability. In this work, the experimental densities, dynamic viscosities and refractive indices for binary mixtures of dimethyl carbonate and four fatty acid esters (methyl decanoate, ethyl decanoate, methyl laurate, ethyl laurate) have been measured and presented over the complete concentration range at temperatures range from 293.15 to 323.15 K under normal pressure. The excess molar volumes and the viscosity deviations of the four binary mixtures were calculated with the measured data and correlated with the Redlich-Kister equation. The excess Gibbs energy of activation was also calculated. From the values of excess properties of the binary mixtures and its deviations indicate that the changes of molecular interactions in the mixtures. The experimental results could be useful for the study of biodiesel-carbonate blended fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Alptekin, E., Canakci, M.: Characterization of the key fuel properties of methyl ester – diesel fuel blends. Fuel. 88, 75–80 (2009)

    Article  CAS  Google Scholar 

  2. Sharma, C., Bakshi, A., Syal, U., Sharma, M.: Excess thermodynamic and transport investigations for the binary mixtures of 1,2,3,4-tetrahydronaphthalene with fatty acid ethyl esters as potential biodiesel fuels. J. Chem. Eng. Data 67(12), 3622–3636 (2022)

    Article  CAS  Google Scholar 

  3. Liu, H., Ma, J., Dong, F., Yang, Y., Liu, X., Ma, G., Zheng, Z., Yao, M.: Experimental investigation of the effects of diesel fuel properties on combustion and emissions on a multi-cylinder heavy-duty diesel engine. Energ. Convers. Manag. 171, 1787–1800 (2018)

    Article  CAS  Google Scholar 

  4. Demirbas, A.: Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energ. Convers. Manag. 47, 2271–2282 (2006)

    Article  CAS  Google Scholar 

  5. Saxena, P., Jawale, S., Joshipura, M.H.A.: Review on prediction of properties of biodiesel and blends of biodiesel. Proc. Eng. 51, 395–402 (2013)

    Article  CAS  Google Scholar 

  6. Ramirez-Verduzco, L.F., Garcia-Flores, B.E., Rodriguez-Rodriguez, J.E., Jaramillo-Jacob, A.R.: Prediction of the density and viscosity in biodiesel blends at various temperatures. Fuel. 90, 1751–1761 (2011)

    Article  CAS  Google Scholar 

  7. Ramachandran, E., Krishnaiah, R., Venkatesan, E.P., Murugan, M., Medapati, S.R., Seka, P.: Experimental investigation for determining an ideal algal biodiesel–diesel blend to improve the performance and mitigate emissions using a response surface methodology. ACS Omega 8, 9187–9197 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Datta, A., Hossain, A., Roy, S.: An overview on biofuels and their advantages and disadvantages. Asian J. Chem. 31, 1851–1858 (2019)

    Article  CAS  Google Scholar 

  9. Wakil, M.A., Kalam, M.A., Masjuki, H.H., Atabani, A.E., Rizwanul Fattah, I.M.: Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend. Energ. Convers. Manage. 94, 51–67 (2015)

    Article  CAS  Google Scholar 

  10. Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Ong, H.C., Chong, W.T., Boosroh, M.H.: Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 22, 346–360 (2013)

    Article  CAS  Google Scholar 

  11. Chen, H., Su, X., He, J.: Investigation on combustion and emission characteristics of a common rail Diesel engine fueled with diesel/n-pentanol/methanol blends. Energy. 167, 297–311 (2019)

    Article  CAS  Google Scholar 

  12. Guo, W., Yin, Y., Pi, N., Liu, F., Tu, S., Ye, L.: Investigation on a novel mixed dialkyl oxalate system as an oxygenated fuel additive. Energy Fuels 34, 4213–4220 (2020)

    Article  CAS  Google Scholar 

  13. Rounce, P., Tsolakis, A., Leung, P., York, A.P.E.: A comparison of diesel and biodiesel emissions using dimethyl carbonate as an oxygenated additive. Energy Fuels 24, 4812–4819 (2010)

    Article  CAS  Google Scholar 

  14. Razzaq, L., Mujtaba, M.A., Shahbaz, M.A., Nawaz, S., Khan, H.M., Hussain, A., Ishtiaq, U., Kalam, M.A., Soudagar, M.E.M., Ismail, K.A., Elfasakhany, A., Rizwan, H.M.: Effect of biodiesel-dimethyl carbonate blends on engine performance, combustion and emission characteristics. Alex Eng. J. 61, 5111–5121 (2022)

    Article  Google Scholar 

  15. SenthilKumar, S., Rajan, K.: Performance and emission characteristics of diesel engine using biodiesel with the effect of dimethyl carbonate (DMC) fumigation. Energ. Source Part. A. 44, 2, 2986–2998 (2022)

    Article  CAS  Google Scholar 

  16. Pan, M., Qian, W., Zheng, Z., Huang, R., Zhou, X., Huang, H., Li, M.: The potential of dimethyl carbonate (DMC) as an alternative fuel for compression ignition engines with different EGR rates. Fuel. 257, 115920 (2019)

    Article  CAS  Google Scholar 

  17. Devarajan, Y.: Experimental evaluation of combustion, emission and performance of research Diesel engine fuelled di-methyl- carbonate and biodiesel blends. Atmos. Pollut. Res. 10, 795–801 (2019)

    Article  CAS  Google Scholar 

  18. Ren, Y., Wang, H.: Densities, surface tensions, and viscosities of diesel–oxygenate mixtures at the temperature 301.15 K. Energy Fuels 21, 1628–1630 (2007)

    Article  CAS  Google Scholar 

  19. Liu, X., Xue, S., Ikram, R., Zhu, C., Shi, Y., He, M.: Improving the viscosity and density of n-butanol as alternative to gasoline by blending with dimethyl carbonate. Fuel. 286, 119360 (2021)

    Article  CAS  Google Scholar 

  20. Huber, M.L., Perkins, R.A., Laesecke, A., Friend, D.G., Sengers, J.V., Assael, M.J., Metaxa, I.N., Vogel, E., Mareš, R., Miyagawa, K.: New international formulation for the viscosity of H2O. J. Phys. Chem. Ref. Data. 38, 101–125 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Romano, E., Trenzado, J.L., González, E., Matos, J.S., Segade, L., Jiménez, E.: Thermophysical properties of four binary dimethyl carbonate + 1-alcohol systems at 288.15–313.15 K. Fluid. Phase. Equilib. 211, 219–240 (2003)

    Article  CAS  Google Scholar 

  22. Zhou, J., Zhu, R., Xu, H., Tian, Y.: Densities, excess molar volumes, isothermal compressibilities, and isobaric expansivities of dimethyl carbonate + cyclohexane systems at temperatures from (293.15 to 313.15) K and pressures from (0.1 to 40) MPa. J. Chem. Eng. Data 55, 5569–5575 (2010)

    Article  CAS  Google Scholar 

  23. Mou, L., Chai, Y., Yang, G., Xia, Q., Liu, Q., Zheng, Q., Zhang, Q.: Density and viscosity of four binary mixtures of [C2mmim][NTf2]/[C4mmim][NTf2] + dimethyl carbonate/diethyl carbonate. J. Chem. Thermodyn. 130, 183–191 (2019)

    Article  CAS  Google Scholar 

  24. Chen, F., Yang, Z., Chen, Z., Hu, J., Chen, C., Cai, J.: Density, viscosity, speed of sound, excess property and bulk modulus of binary mixtures of γ-butyrolactone with acetonitrile, dimethyl carbonate, and tetrahydrofuran at temperatures (293.15 to 333.15) K. J. Mol. Liq. 209, 683–692 (2015)

    Article  CAS  Google Scholar 

  25. Comelli, F., Bigi, A., Vitalini, D., Rubin, K.: Densities, viscosities, refractive indices, and heat capacities of poly(ethylene glycol-ran-propylene glycol) + esters of carbonic acid at (293.15 and 313.15) K and at atmospheric pressure. J. Chem. Eng. Data 55, 205–210 (2010)

    Article  CAS  Google Scholar 

  26. Rodríguez, A., Canosa, J., Tojo, J.: Density, refractive index, and speed of sound of binary mixtures (diethyl carbonate + alcohols) at several temperatures. J. Chem. Eng. Data. 46, 1476–1486 (2001)

    Article  Google Scholar 

  27. Gayol, A., Casás, L.M., Martini, R.E., Andreatta, A.E., Legido, J.L.: Volumetric properties of (dialkyl carbonate + n-alkane) mixtures at high pressures: Experimental measurement and Nitta–Chao model prediction. J. Chem. Thermodyn. 58, 245–253 (2013)

    Article  CAS  Google Scholar 

  28. Yang, C., Xu, W., Ma, P.: Excess molar volumes and viscosities of binary mixtures of dimethyl carbonate with chlorobenzene, hexane, and heptane from (293.15 to 353.15) K and at atmospheric pressure. J. Chem. Eng. Data 49, 1802–1808 (2004)

    Article  CAS  Google Scholar 

  29. You, S., Jeong, I., Hwang, I., Park, S.J.: The solid–liquid equilibrium, excess molar volume and refractive deviation properties of binary systems containing dimethyl carbonate, anisole and phenol. Fluid. Phase. Equilib. 383, 21–26 (2014)

    Article  CAS  Google Scholar 

  30. Pratas, M.J., Freitas, S., Oliveira, M.B., Monteiro, S.C., Lima, A.S., Coutinho, J.A.P.: Densities and viscosities of fatty acid methyl and ethyl esters. J. Chem. Eng. Data 55, 3983–3990 (2010)

    Article  CAS  Google Scholar 

  31. Ndiaye, E.H.I., Nasri, D., Daridon, J.L.: Speed of sound, density, and derivative properties of fatty acid methyl and ethyl esters under high pressure: Methyl caprate and ethyl caprate. J. Chem. Eng. Data. 57, 2667–2676 (2012)

    Article  CAS  Google Scholar 

  32. Wang, X., Wang, X., Chen, J.: Experimental investigations of density and dynamic viscosity of n-hexadecane with three fatty acid methyl esters. Fuel. 166, 553–559 (2016)

    Article  CAS  Google Scholar 

  33. Althouse, P.M., Hunter, G.W., Triebold, H.O.: Refractive indices of the methyl, propyl, and isopropyl esters of the C6–C18 saturated fatty acids for various temperatures between 20 and 45 °C. J. Am. Oil Chem. Soc. 24, 257–259 (1947)

    Article  CAS  Google Scholar 

  34. Dzida, M., Jezak, S., Sumara, J., Zarska, M., Goralski, P.: High-pressure physicochemical properties of ethyl caprylate and ethyl caprate. J. Chem. Eng. Data 58, 1955–1962 (2013)

    Article  CAS  Google Scholar 

  35. Habrioux, M., Bazile, J.P., Galliero, G., Daridon, J.L.: Viscosities of fatty acid methyl and ethyl esters under high pressure: methyl caprate and ethyl caprate. J. Chem. Eng. Data 60, 902–908 (2015)

    Article  CAS  Google Scholar 

  36. Shigley, J.W., Bonhorst, C.W., Liang, C.C., Althouse, P.M., Triebold, H.O.: Physical characterization of a) a series of ethyl esters and b) a series of ethanoate esters. J. Am. Oil Chem. Soc. 32, 213–215 (1955)

    Article  CAS  Google Scholar 

  37. Zhao, G., Yuan, Z., Yin, J., Ma, S.: Thermophysical properties of fatty acid methyl and ethyl esters. J. Chem. Thermodyn. 134, 195–212 (2019)

    Article  CAS  Google Scholar 

  38. Pratas, M.J., Oliveira, M.B., Pastoriza-Gallego, M.J., Queimada, A.J., Pineiro, M.M., Coutinho, J.A.P.: High-pressure Biodiesel Density: Experimental measurements, correlation, and cubic-plus-association equation of state (CPA EoS) modeling. Energy Fuels. 25, 3806–3814 (2011)

    Article  CAS  Google Scholar 

  39. Aissa, M.A., Ivanis, G.R., Radovic, I.R., Kijevcanin, M.L.: Experimental investigation and modeling of thermophysical properties of pure methyl and ethyl esters at high pressures. Energy Fuels 31, 7110–7122 (2017)

    Article  CAS  Google Scholar 

  40. Liew, K.Y., Seng, C.E., Oh, L.L.: Viscosities and densities of the methyl esters of some n-Alkanoic acids. J. Am. Oil Chem. Soc. 69, 155–158 (1992)

    Article  CAS  Google Scholar 

  41. Gouw, T.H., Vlugter, J.C.: Physical properties of fatty acid methyl esters. II. Refractive index and molar refraction. J. Am. Oil Chem. Soc. 41, 426–429 (1964)

    Article  CAS  Google Scholar 

  42. Liau, W., Tang, M., Chen, Y.P.: Densities and viscosities of butyl acrylate + 1-butanol and ethyl laurate + 1-butanol at 293.15, 303.15, and 313.15 K. J. Chem. Eng. Data. 43, 826–829 (1998)

    Article  CAS  Google Scholar 

  43. Wang, X., Kang, K., Lang, H.: High-pressure liquid densities and derived thermodynamic properties for methyl laurate and ethyl laurate. J. Chem. Thermodyn. 103, 310–315 (2016)

    Article  CAS  Google Scholar 

  44. Lopez, E.R., Lugo, L., Comunas, M.J.P., García, J., Fernández, J.: Temperature dependence of the excess molar volume of (dimethyl carbonate, or diethyl carbonate + toluene) from T = 278.15 K to 323.15 K. J. Chem. Thermodyn. 32, 743–754 (2000)

    Article  CAS  Google Scholar 

  45. Yue, L., Qin, X., Wu, X., Xu, L., Guo, Y., Fang, W.: Excess molar volume along with viscosity, refractive index and relative permittivity for binary mixtures of exo-tetrahydrodicyclopentadiene with four octane isomers. J. Chem. Thermodyn. 81, 26–33 (2015)

    Article  CAS  Google Scholar 

  46. Kumar, S., Jeevanandham, P.: Densities, viscosities, refractive indices and excess properties of aniline and o-anisidine with 2-alkoxyethanols at 303.15 K. J. Mol. Liq. 174, 34–41 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XG and DL wrote and revised the main manuscript text. DL prepared Figs. 1, 2, 3, 4, 5 and 6. MZ and BH investigated and collected the data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Dan Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thermophysical properties of blended biodiesel are important to design transfer heat and mass equipment and to interpret the kind of interactions that occur in the studied blends.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Hong, B., Zhang, M. et al. Investigations on the Thermophysical Properties of Binary Systems of Fatty Acid Esters + Dimethyl Carbonate. J Solution Chem 53, 257–277 (2024). https://doi.org/10.1007/s10953-023-01327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01327-7

Keywords

Navigation