Skip to main content
Log in

Ammonium-Based Ionic Liquids: Cross-Validation of Energetics Using Solution Calorimetry, Quartz Crystal Microbalance, Quantum Chemistry, and Structure–Property Relationships

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solution enthalpies of tetra-methyl- and tetra-butyl-ammonium tetrafluoroborates were measured using solution calorimetry. The sublimation enthalpies and vaporization enthalpies of ammonium-based ionic liquids with the anions [BF4] and [NO3] were derived from temperature dependencies of the vapour pressures, measured with a quartz crystal microbalance and adjusted to the reference temperature 298.15 K. The solution calorimetry results were used to derive the solid-phase enthalpies of formation of the compounds studied. The latter results were combined with the sublimation enthalpies to obtain the experimental gas-phase formation enthalpies of the ionic liquid containing [BF4] and [NO3] anions. The theoretical gas-phase formation enthalpies were calculated using the quantum chemical method G3MP2 and agree well with the experimental results. Different types of structure–property relationships were used to establish the consistency of the alkyl-ammonium-based ionic liquids studied in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. del Río, J.M., Grolier, J.-P.E.: Chapter 4. Isothermal titration calorimetry. In: Enthalpy and internal energy, pp. 96–132. Royal Society of Chemistry, Cambridge (2017)

    Google Scholar 

  2. Marczak, W., Lehmann, J.K., Heintz, A.: Calorimetric investigations of hydrogen bonding in binary mixtures containing pyridine and its methyl-substituted derivatives. I. The dilute solutions of water. J. Chem. Thermodyn. 35, 269–278 (2003). https://doi.org/10.1016/S0021-9614(02)00363-4

    Article  CAS  Google Scholar 

  3. Marczak, W., Verevkin, S.P., Heintz, A.: Enthalpies of solution of organic solutes in the ionic liquid 1-methyl-3-ethyl-imidazolium bis-(trifluoromethyl-sulfonyl)amide. J. Solution Chem. 32, 519–526 (2003). https://doi.org/10.1023/A:1025361832209

    Article  CAS  Google Scholar 

  4. Shinkle, A.A., Pomaville, T.J., Sleightholme, A.E.S., Thompson, L.T., Monroe, C.W.: Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries. J. Power Sources 248, 1299–1305 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.034

    Article  CAS  Google Scholar 

  5. Bhatt, V.D., Gohil, K.: Ion exchange synthesis and thermal characteristics of some [N+4444] based ionic liquids. Thermochim. Acta. 556, 23–29 (2013). https://doi.org/10.1016/j.tca.2013.01.003

    Article  CAS  Google Scholar 

  6. Zhou, S., Liu, L., Wang, B., Ma, M., Xu, F., Sun, R.: Novel basic ionic liquid based on alkylammonium as efficient catalyst for Knoevenagel reaction. Synth. Commun. 42, 1384–1391 (2012). https://doi.org/10.1080/00397911.2010.540692

    Article  CAS  Google Scholar 

  7. Coker, T.G., Ambrose, J., Janz, G.J.: Fusion properties of some ionic quaternary ammonium compounds. J. Am. Chem. Soc. 92, 5293–5297 (1970). https://doi.org/10.1021/ja00721a001

    Article  CAS  Google Scholar 

  8. Zabinska, G., Ferloni, P., Sanesi, M.: On the thermal behaviour of some tetraalkylammonium tetrafluoroborates. Thermochim. Acta. 122, 87–94 (1987). https://doi.org/10.1016/0040-6031(87)80108-9

    Article  CAS  Google Scholar 

  9. Matsumoto, K., Harinaga, U., Tanaka, R., Koyama, A., Hagiwara, R., Tsunashima, K.: The structural classification of the highly disordered crystal phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] salts (Nn+ = tetraalkylammonium and Pn+ = tetraalkylphosphonium). Phys. Chem. Chem. Phys. 16, 23616–23626 (2014). https://doi.org/10.1039/C4CP03391D

    Article  CAS  PubMed  Google Scholar 

  10. Pringle, J.M., Howlett, P.C., MacFarlane, D.R., Forsyth, M.: Organic ionic plastic crystals: recent advances. J. Mater. Chem. 20, 2056 (2010). https://doi.org/10.1039/b920406g

    Article  CAS  Google Scholar 

  11. Johnsson, M., Persson, I.: Determination of heats and entropies of transfer for some univalent ions from water to methanol, acetonitrile, dimethylsulfoxide, pyridine and tetrahydrothiophene. Inorganica Chim. Acta. 127, 25–34 (1987). https://doi.org/10.1016/S0020-1693(00)88359-0

    Article  CAS  Google Scholar 

  12. Kalb, R. Proionic GmbH, EP2809739B1. https://patents.google.com/patent/EP2809739B1/zh

  13. Lang, O., Wisniewski, T., Lutz, M.: Destillation ionischer flüssigkeiten durch kurzwegdestillation, WO/2013/171060, 2013, https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013171060 (2013)

  14. Verevkin, S.P., Emel´yanenko, V.N., Krossing, I., Kalb, R.: Thermochemistry of ammonium based ionic liquids: tetra-alkyl ammonium nitrates–experiments and computations. J. Chem. Thermodyn. 51, 107–113 (2012). https://doi.org/10.1016/j.jct.2012.02.035

    Article  CAS  Google Scholar 

  15. Gaune-Escard, M., Seddon, K.R. (eds.): Molten Salts and Ionic Liquids: never the Twain? John Wiley & Sons Inc, Hoboken, NJ, USA (2010)

    Google Scholar 

  16. Zaitsau, D.H., Yermalayeu, A.V., Schubert, T.J.S., Verevkin, S.P.: Alkyl-imidazolium tetrafluoroborates: vapor pressure, thermodynamics of vaporization, and enthalpies of formation. J. Mol. Liq. 242, 951–957 (2017). https://doi.org/10.1016/j.molliq.2017.07.094

    Article  CAS  Google Scholar 

  17. Yermalayeu, A.V., Zaitsau, D.H., Emel´yanenko, V.N., Verevkin, S.P.: Thermochemistry of ammonium based ionic liquids: thiocyanates-experiments and computations. J. Solution Chem. 44, 754–768 (2015). https://doi.org/10.1007/s10953-015-0316-2

    Article  CAS  Google Scholar 

  18. Verevkin, S.P., Zaitsau, D.H., Emel´yanenko, V., Heintz, A.: A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures. J. Phys. Chem. B. 115, 12889–12895 (2011). https://doi.org/10.1021/jp207397v

    Article  CAS  PubMed  Google Scholar 

  19. Curtiss, L.A., Redfern, P.C., Raghavachari, K., Rassolov, V., Pople, J.A.: Gaussian-3 theory using reduced Möller–Plesset order. J. Chem. Phys. 110, 4703–4709 (1999). https://doi.org/10.1063/1.478385

    Article  CAS  Google Scholar 

  20. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J. V, Cioslowski, J., Fox, D.J.: Gaussian 09, Revision C.01, (2016). https://gaussian.com/citation/

  21. Chickos, J.S., Acree, W.E., Liebman, J.F.: Estimating solid–liquid phase change enthalpies and entropies. J. Phys. Chem. Ref. Data. 28, 1535–1673 (1999). https://doi.org/10.1063/1.556045

    Article  CAS  Google Scholar 

  22. Zaitsau, D.H., Ludwig, R., Verevkin, S.P.: Determination of the dispersion forces in the gas phase structures of ionic liquids using exclusively thermodynamic methods. Phys. Chem. Chem. Phys. 23, 7398–7406 (2021). https://doi.org/10.1039/D0CP05439A

    Article  CAS  PubMed  Google Scholar 

  23. Emel´yanenko, V.N., Verevkin, S.P., Heintz, A., Schick, C.: Ionic liquids Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies. J. Phys. Chem. B. 112, 8095–8098 (2008). https://doi.org/10.1021/jp802112m

    Article  CAS  PubMed  Google Scholar 

  24. Verevkin, S.P., Zaitsau, D.H., Emel´yanenko, V.N., Yermalayeu, A.V., Schick, C., Liu, H., Maginn, E.J., Bulut, S., Krossing, I., Kalb, R., Emel´yanenko, V.N., Yermalayeu, A.V., Schick, C., Liu, H., Maginn, E.J., Bulut, S., Krossing, I., Kalb, R.: Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data. J. Phys. Chem. B. 117, 6473–6486 (2013). https://doi.org/10.1021/jp311429r

    Article  CAS  PubMed  Google Scholar 

  25. Verevkin, S.P.: Imidazolium based ionic liquids: Unbiased recovering of vaporization enthalpies from infinite-dilution activity coefficients. Molecules 26, 5873 (2021). https://doi.org/10.3390/molecules26195873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cox, J.D., Wagman, D.D., Medvedev, V.A.: CODATA key values for thermodynamics. Hemisphere Pub. Corp., New York (1989)

    Google Scholar 

  27. Emel´yanenko, V.N., Verevkin, S.P., Heintz, A.: The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations. J. Am. Chem. Soc. 129, 3930–3937 (2007). https://doi.org/10.1021/ja0679174

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

SPV acknowledges financial support from German Science Foundation in the frame of SPP 1807 “Control of London Dispersion Interactions in Molecular Chemistry”, grant VE 265-9/2. DHZ acknowledges the financial support from DFG, grant ZA 872/3-1, 407078203. This paper has been supported by the Kazan Federal University Strategic Academic Leadership Programme (“PRIORITY-2030”). The work was supported by the Ministry of Science and Higher Education of the Russian Federation (theme No. AAAA- A12-1111100072-9) as part of the state task of the Samara State Technical University (creation of new youth laboratories). Andrei V. Yermalayeu is grateful for DFG financial support of his PhD work in Rostock. His current address: Parr Instrument Company, Moline, Illinois 61265, US.

Author information

Authors and Affiliations

Authors

Contributions

SPV and SVV developed the methodology and wrote the main manuscript text and ESI. DHZ performed the vapour pressure measurements and wrote the text and ESI. AVY performed the solution calorimetry experiments and wrote ESI. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sergey P. Verevkin.

Ethics declarations

Conflict of interest

The authors report no conflict of interest related to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verevkin, S.P., Zaitsau, D.H., Yermalayeu, A.V. et al. Ammonium-Based Ionic Liquids: Cross-Validation of Energetics Using Solution Calorimetry, Quartz Crystal Microbalance, Quantum Chemistry, and Structure–Property Relationships. J Solution Chem 52, 1194–1208 (2023). https://doi.org/10.1007/s10953-023-01307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01307-x

Keywords

Navigation