Skip to main content
Log in

Non-Arrhenius Behavior of the Viscosity and Glass Transition of 1,2-Propanediol Solutions Containing LiBF4

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A familiar polyalcohol, 1,2-propanediol (12PDO), is among the simple alcoholic solvents with high solubility for lithium tetrafluoroborate (LiBF4), as well as a wide temperature range for liquids. The viscosity of 12PDO solutions containing LiBF4 was measured in the temperature range of 280‒340 K using a vibrational viscometer, and it exhibited non-Arrhenius behavior fitted with the Vogel–Fulcher–Tamman (VFT) equation, which is an empirical model for describing liquid dynamics. The viscosity (η) increased with the increasing mole fraction of LiBF4 (x), and the variation in η was found to be mainly controlled by the pre-exponential factor η0 in the VFT expression. The VFT-fitting parameters, the strength parameter (D), and ideal glass transition temperature (T0), which indicate the Arrhenius behavior and an ideal glass transition temperature, respectively, correlated with the thermal analysis results that were obtained via differential scanning calorimetry. With the increasing x, the value of D decreased rapidly for x < 0.20, whereas it remained approximately unchanged for x > 0.20. The concentration dependence of T0 also differed at approximately x = 0.20. The changes in D and T0 with x indicated that the intrinsic hydrogen-bonding networks between the solvent molecules were rapidly destroyed by the added ions at reduced salt concentrations, while such a structural breaking effect of the added ions weakened owing to ion associations at increased salt concentrations. Thus, it was observed that the solvation structure and dynamics of the solutions strongly depended on the salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Böhmer, R., Ngai, K.L., Angell, C.A., Plazek, D.J.: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. (1993). https://doi.org/10.1063/1.466117

    Article  Google Scholar 

  2. Huang, D., McKenna, G.B.: New insights into the fragility dilemma in liquids. J. Chem. Phys. 114, 5621–5630 (2001)

    Article  CAS  Google Scholar 

  3. Rosa, A.C.P., Cruz, C., Santana, W.S., Brito, E., Moret, M.A.: Non-Arrhenius behavior and fragile-to-strong transition of glass-forming liquids. Phys. Rev. E (2020). https://doi.org/10.1103/PhysRevE.101.042131

    Article  PubMed  Google Scholar 

  4. Machanová, K., Wagner, Z., Andresová, A., Rotrekl, J., Boisset, A., Jacquemin, J., Bendová, M.: Thermal properties of alkyl-triethylammonium bis{(trifluoromethyl)sulfonyl}imide ionic liquids. J. Solution Chem. (2015). https://doi.org/10.1007/s10953-015-0323-3

    Article  Google Scholar 

  5. Takeda, K., Hirami, H., Izawa, T., Terashima, Y.: Density, viscosity, and glass transition of an ethylenediamine–ethylene glycol binary system. J. Solution Chem. (2017). https://doi.org/10.1007/s10953-017-0650-7

    Article  Google Scholar 

  6. Wang, L.M., Tian, Y., Liu, R., Richert, R.: Calorimetric versus kinetic glass transitions in viscous monohydroxy alcohols. J. Chem. Phys. 128, 084503 (2008)

    Article  PubMed  Google Scholar 

  7. Saini, M.K., Murthy, S.S.N.: Glass formation in binary solutions of acetaminophen with guaifenesin and mephenesin. J. Solution Chem. 44, 1723–1748 (2015)

    Article  CAS  Google Scholar 

  8. Crowley, K.J., Zografi, G.: The use of thermal methods for predicting glass-former fragility. Thermochim. Acta (2001). https://doi.org/10.1016/S0040-6031(01)00662-1

    Article  Google Scholar 

  9. Terashima, Y., Mori, M., Sugimoto, N., Takeda, K.: Fragility and glass transition for binary mixtures of 1,2-propanediol and LiBF4. Chem. Phys. Lett. 600, 46–50 (2014)

    Article  CAS  Google Scholar 

  10. Terashima, Y., Mori, M., Takeda, K.: Fragility and glass transition for binary mixtures of 1,2-propanediamine and NaClO4. J. Therm. Anal. Calorim. (2016). https://doi.org/10.1007/s10973-015-4781-z

    Article  Google Scholar 

  11. Terashima, Y.: Difference in variation of glass transition activation energy between 1,2-propanediamine and 1,2-propanediol. Chem. Phys. Lett. (2016). https://doi.org/10.1016/j.cplett.2016.03.024

    Article  Google Scholar 

  12. Terashima, Y., Takeda, K.: Effects of adding LiBF4 on the glass-transition kinetics of 1,2-propanediol. Chem. Phys. 497, 17–23 (2017)

    Article  CAS  Google Scholar 

  13. Terashima, Y., Sugimoto, N., Mori, M., Kinoshita, N., Takeda, K.: Effects of solvents and solutes on glass transition thermodynamics and kinetic fragility for amine and alcohol solutions of inorganic salts. J. Therm. Anal. Calorim. 135, 2797–2805 (2019)

    Article  CAS  Google Scholar 

  14. Terashima, Y., Hirai, T.: Mapping and classification of ionic liquids in terms of glass transition and fragility. J. Therm. Anal. Calorim. (2022). https://doi.org/10.1007/s10973-022-11427-z

    Article  Google Scholar 

  15. Vogel, H.: The law of the relation between the viscosity of liquids and the temperature. Phys Z. 22, 645–646 (1921)

    CAS  Google Scholar 

  16. Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925)

    Article  CAS  Google Scholar 

  17. Tammann, G., Hesse, W.: Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245–257 (1926)

    Article  CAS  Google Scholar 

  18. Wang, G., Xing, Z., Zhang, X., Liu, F., Zhang, Q.: Thermodynamic, excess properties and intermolecular interactions of ionic liquid 1- Ethyl-3-Methylimidazolium thiocyanate and propylene carbonate mixtures. J. Solution Chem. 51, 594–608 (2022)

    Article  CAS  Google Scholar 

  19. Cai, G., Yang, S., Wang, X., Zhou, Q., Xu, J., Lu, X.: Densities and viscosities of binary mixtures containing the polyhydric protic ionic liquid(2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium methanesulfonate) and water or alcohols. J. Solution Chem. 49, 423–457 (2020)

    Article  CAS  Google Scholar 

  20. Wei, Y., Zhang, W., Zhang, X., Zhang, Q.: The volumetric and transport properties of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid and propylene carbonate binary system. J. Solution Chem. (2019). https://doi.org/10.1007/s10953-019-00842-w

    Article  Google Scholar 

  21. Satheesh, B., Sreenu, D., Jyostna, T.S.: Thermodynamic studies on non-ideal binary mixtures of isoamyl alcohol and various alkanols at 298.15 to 308.15 K. J. Solution Chem. (2021). https://doi.org/10.1007/s10953-020-01048-1

    Article  Google Scholar 

  22. Katsu, S., Ito, S., Yoshimura, N., Takayanagi, M.: Variation in near-infrared spectra of water containing polyhydric alcohol. J. Solution Chem. (2019). https://doi.org/10.1007/s10953-019-00928-5

    Article  Google Scholar 

  23. Doi, T., Fujii, R., Inaba, M.: Improved stability of highly concentrated LiBF4/fluorinated ethyl acetate-based electrolyte solutions with a co-solvent for LiNi0.8Co0.1Mn0.1O2 positive electrodes in lithium ion batteries. J. Appl. Electrochem. 51(2), 1535–1544 (2021)

    Article  CAS  Google Scholar 

  24. Sashmitha, K., Rani, M.U.: A comprehensive review of polymer electrolyte for lithium-ion battery. Polym. Bull. (2022). https://doi.org/10.1007/s00289-021-04008-x

    Article  Google Scholar 

  25. Huang, J., Li, F., Wu, M., Wang, H., Qi, S., Jiang, G., Li, X., Ma, J.: Electrolyte chemistry for lithium metal batteries. Sci. China Chem. 65, 840–857 (2022)

    Article  CAS  Google Scholar 

  26. Viswanath, D.S., Ghosh, T.K., Prasad, D.H.L., Dutt, N.V.K., Rani, K.Y.: Viscometers. In: Viswanath, D.S., Ghosh, T.K., Prasad, D.H.L., Dutt, N.V.K., Rani, K.Y. (eds.) Viscosity of Liquids, pp. 10–107. Springer, Dordrecht, The Netherlands (2007)

    Google Scholar 

  27. Adam, G., Gibbs, J.H.: On the Temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. (1965). https://doi.org/10.1063/1.1696442

    Article  Google Scholar 

  28. Wang, Y., Turk, M.C., Sankarasubramanian, M., Srivatsa, A., Roy, D., Krishnan, S.: Thermophysical and transport properties of blends of an ether-derivatized imidazolium ionic liquid and a Li+-based solvate ionic liquid. J. Mater. Sci. (2017). https://doi.org/10.1007/s10853-016-0735-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wu, L., Venkatanarayananan, R.I., Shi, X., Roy, D., Krishnan, S.: Glass transition, viscosity, and conductivity correlations in solutions of lithium salts in PEGylated imidazolium ionic liquids. J. Mol. Liq. (2014). https://doi.org/10.1016/j.molliq.2014.07.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The single author, YT, contributed to all processes of this study: conception and design, material preparation, data collection and analysis, and writing and revising the manuscript, and approved submitting the manuscript.

Corresponding author

Correspondence to Yukio Terashima.

Ethics declarations

Competing interests

No funds, grants, or other support was received. The author has no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terashima, Y. Non-Arrhenius Behavior of the Viscosity and Glass Transition of 1,2-Propanediol Solutions Containing LiBF4. J Solution Chem 53, 667–679 (2024). https://doi.org/10.1007/s10953-023-01288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01288-x

Keywords

Navigation