Skip to main content
Log in

Densities and Viscosities of Binary Mixtures Containing the Polyhydric Protic Ionic Liquid(2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium methanesulfonate) and Water or Alcohols

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium methanesulfonate ([BHEM][mesy]) displayed good ability for separating cellulose from biomass material in previous works. In order to have a better understanding of the structure–property relationship and facilitate further potential applications in industry, it is necessary to obtain more data for the physicochemical properties of [BHEM][mesy] and its mixtures. In this work, the densities (ρ) and viscosities (η) of [BHEM][mesy] + solvents (water, methanol, ethanol, n-propanol and isopropanol) mixtures were measured at six temperatures from (298.15 to 323.15) K over the full molar composition range and fitted by an empirical quadratic equation and Vogel–Fucher–Tammann (VFT) equation. Moreover, the excess molar volumes (VE) and viscosity deviation (Δη) of five binary mixtures were calculated and correlated by the Redlich–Kister equation. In addition, the apparent molar volumes (\({V}_{\varphi }\)) and partial molar volumes (\(\stackrel{-}{V}\)) of [BHEM][mesy] and solvents were also calculated and all these physicochemical property data (density, viscosity, excess molar properties as well as the apparent molar properties) are discussed in terms of the structure and interaction of binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lamaming, J., Hashim, R., Leh, C.P., Sulaiman, O., Sugimoto, T., Nasir, M.: Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Claeis guineensis). Carbohydr. Polym. 134, 534–540 (2015)

    CAS  PubMed  Google Scholar 

  2. Chieng, B., Lee, S., Ibrahim, N., Then, Y., Loo, Y.: Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 9, 355 (2017)

    PubMed Central  Google Scholar 

  3. Prozil, S.O., Evtuguin, D.V., Lopes, L.P.C.: Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind. Crops Prod. 35, 178–184 (2012)

    CAS  Google Scholar 

  4. Sindhu, R., Binod, P., Janu, K.U., Sukumaran, R.K., Pandey, A.: Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World J. Microbiol. Biotechnol. 28, 473–483 (2012)

    CAS  PubMed  Google Scholar 

  5. Xie, W., Zhou, D., Ren, Y., Tang, S., Kuang, M., Du, S.: 1-Butyl-3-methylimidazolium chloride pretreatment of cotton stalk and structure characterization. Renew. Energy 125, 668–674 (2018)

    CAS  Google Scholar 

  6. Xiao, W., Yin, W., Xia, S., Ma, P.: The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydr. Polym. 87, 2019–2023 (2012)

    CAS  Google Scholar 

  7. Vancov, T., Alston, A.-S., Brown, T., McIntosh, S.: Use of ionic liquids in converting lignocellulosic material to biofuels. Renew. Energy 45, 1–6 (2012)

    CAS  Google Scholar 

  8. Elgharbawy, A.A., Alam, M.Z., Moniruzzaman, M., Goto, M.: I onic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem. Eng. J. 109, 252–267 (2016)

    CAS  Google Scholar 

  9. Wang, J., Petit, C., Zhang, X., Park, A.-H.A.: Simultaneous measurement of CO2 sorption and swelling of phosphate-based ionic liquid. Green Energy Environ. 1, 258–265 (2016)

    Google Scholar 

  10. Ren, S., Hou, Y., Zhang, K., Wu, W.: Ionic liquids: functionalization and absorption of SO2. Green Energy Environ. 3, 179–190 (2018)

    Google Scholar 

  11. Mora-Pale, M., Meli, L., Doherty, T.V., Linhardt, R.J., Dordick, J.S.: Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol. Bioeng. 108, 1229–1245 (2011)

    CAS  PubMed  Google Scholar 

  12. Clough, M.T., Geyer, K., Hunt, P.A., Mertes, J., Welton, T.: Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Phys. Chem. Chem. Phys. 15, 20480–20495 (2013)

    CAS  PubMed  Google Scholar 

  13. Yang, S., Lu, X., Zhang, Y., Xu, J., Xin, J., Zhang, S.: Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids. Cellulose 25, 3241–3254 (2018)

    CAS  Google Scholar 

  14. González, E.J., González, B., Macedo, E.A.: Effect of the relative humidity and isomeric structure on the physical properties of pyridinium based-ionic liquids. J. Chem. Thermodyn. 86, 96–105 (2015)

    Google Scholar 

  15. Alvarez, V.H., Mattedi, S., Aznar, M.: Density, refraction index, and vapor–liquid equilibria of n-methyl-2-hydroxyethylammonium hexanoate plus (methyl acetate, ethyl acetate, or propyl acetate) at several temperatures. Ind. Eng. Chem. Rese. 51, 14543–14554 (2012)

    CAS  Google Scholar 

  16. Ghatee, M.H., Bahrami, M., Khanjari, N., Firouzabadi, H., Ahmadi, Y.: A functionalized high-surface-energy ammonium-based ionic liquid: experimental measurement of viscosity, density, and surface tension of (2-hydroxyethyl)ammonium formate. J. Chem. Eng. Data 57, 2095–2101 (2012)

    CAS  Google Scholar 

  17. Kurnia, K.A., Wilfred, C.D., Murugesan, T.: Thermophysical properties of hydroxyl ammonium ionic liquids. J. Chem. Thermodyn. 41, 517–521 (2009)

    CAS  Google Scholar 

  18. Iglesias, M., Torres, A., Gonzalez-Olmos, R., Salvatierra, D.: Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-hydroxy ethylammonium formate (2-HEAF) + short hydroxylic solvents}. J. Chem. Thermodyn. 40, 119–133 (2008)

    CAS  Google Scholar 

  19. Hosseini, S.M., Alavianmehr, M.M., Gutiérrez, A., Khalifeh, R., Moghadasi, J., Aparicio, S.: On the properties and structure of 2-hydroxyethylammonium formate ionic liquid. J. Mol. Liq. 249, 233–244 (2018)

    CAS  Google Scholar 

  20. Song, X., Kanzaki, R., Ishiguro, S., Umebayashi, Y.: Physicochemical and acid-base properties of a series of 2-hydroxyethylammonium-based protic ionic liquids. Analy. Sci. 28, 469–474 (2012)

    CAS  Google Scholar 

  21. Álvarez, V.H., Dosil, H., Gonzalez-Cabaleiro, R., Mattedi, S., Martin-Pastor, M., Iglesias, M., Navaza, J.M.: Brønsted ionic liquids for sustainable processes: synthesis and physical properties. J. Chem. Eng. Data 55, 625–642 (2010)

    Google Scholar 

  22. Bicak, N.: A new ionic liquid: 2-hydroxy ethylammonium formate. J. Mol. Liq. 116, 15–18 (2005)

    CAS  Google Scholar 

  23. Oliveira, L.M.C., Ribeiro, F.R.G., Alcantara, M.L., Pisoni, G.O., Cabral, V.F., Cardozo-Filho, L., Mattedi, S.: High pressure vapor–liquid equilibria for binary methane and protic ionic liquid based on propionate anions. Fluid Phase Equilib. 426, 65–74 (2016)

    CAS  Google Scholar 

  24. Li, Y., Figueiredo, E.J.P., Santos, M.J., Santos, J.B., Talavera-Prieto, N.M.C., Carvalho, P.J., Ferreira, A.G.M., Mattedi, S.: Volumetric and acoustical properties of aqueous mixtures of N-methyl-2-hydroxyethylammonium butyrate and N-methyl-2-hydroxyethylammonium pentanoate at T = (298.15 to 333.15) K. J. Chem. Thermodyn. 97, 191–205 (2016)

    CAS  Google Scholar 

  25. Brennecke, H., Brennecke, J.F.: Temperature and composition dependence of the density and viscosity of binary mixtures of water + ionic liquid. J. Chem. Eng. Data 51, 2145–2155 (2006)

    Google Scholar 

  26. Zhang, L., Lu, X., Ye, D., Guo, Y., Fang, W.: Density and viscosity for binary mixtures of the ionic liquid 2,2-diethyl-1,1,3,3-tetramethylguanidinium ethyl sulfate with water, methanol, or ethanol. J. Chem. Eng. Data 61, 1023–1031 (2016)

    CAS  Google Scholar 

  27. Gong, Y.H., Shen, C., Lu, Y.Z., Meng, H., Li, C.X.: Viscosity and density measurements for six binary mixtures of water (methanol or ethanol) with an ionic liquid ([Bmim][Dmp] or [Emim][Dmp]) at atmospheric pressure in the temperature range of (293.15 to 333.15) K. J. Chem. Eng. Data 57, 33–39 (2011)

    Google Scholar 

  28. Blanco, A., García-Abuín, A., Gómez-Díaz, D., Navaza, J.M.: Density, speed of sound, viscosity and surface tension of 3-dimethylamino-1-propylamine + water, 3-amino-1-propanol + 3-dimethylamino-1-propanol, and (3-amino-1-propanol + 3-dimethylamino-1-propanol) + water from T = (293.15 to 323.15) K. J. Chem. Eng. Data 62, 2272–2279 (2017)

    CAS  Google Scholar 

  29. Domańska, U., Laskowska, M.: Temperature and composition dependence of the density and viscosity of binary mixtures of {1-butyl-3-methylimidazolium thiocyanate + 1-alcohols}. J. Chem. Eng. Data 54, 2113–2119 (2009)

    Google Scholar 

  30. Zhang, Z., Zhou, Q., Lu, X., Qiao, C., Zhang, S.: Densities and viscosities of binary mixtures containing 1,3-dimethylimidazolium dimethylphosphate and alcohols. J. Chem. Eng. Data 59, 2377–2388 (2014)

    CAS  Google Scholar 

  31. Martín, C.S.: Densities and viscosities of binary mixtures of 1,4-dioxane with 1-propanol and 2-propanol at (25, 30, 35, and 40) °C. J. Chem. Eng. Data 46, 1149–1152 (2001)

    Google Scholar 

  32. Kermanpour, F., Sharifi, T.: Measurement and correlation of the excess properties of ternary mixture of x1[Hmim][BF4] + x21-propanol + x32-propanol at different temperatures. J. Chem. Eng. Data 59, 1922–1929 (2014)

    CAS  Google Scholar 

  33. Dománska, U., Królikowska, M.: Density and viscosity of binary mixtures of thiocyanate ionic liquids + water as a function of temperature. J. Solution Chem. 41, 1422–1445 (2012)

    PubMed  PubMed Central  Google Scholar 

  34. Yu, Z., Gao, H., Wang, H., Chen, L.: Densities, viscosities, and refractive properties of the binary mixtures of the amino acid ionic liquid [Bmim][Ala] with methanol or benzylalcohol at T = (298.15 to 313.15) K. J. Chem. Eng. Data 56, 2877–2883 (2011)

    CAS  Google Scholar 

  35. Marigliano, A.C.G., Sólimo, H.N.: Density, viscosity, excess molar volume, viscosity deviation, and their correlations for formamide + three alkan-1-ols binary systems. J. Chem. Eng. Data 47, 796–800 (2002)

    Google Scholar 

  36. Castro, M.C., Arce, A., Soto, A., Rodríguez, H.: Thermophysical characterization of the mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate with 1-propanol or 2-propanol. J. Chem. Eng. Data 61, 2299–2310 (2016)

    CAS  Google Scholar 

  37. Yang, F., Ma, Q., Wang, X., Liu, Z.: Influence of aprotic cosolvents on the thermophysical properties of imidazolium-based ionic liquid. J. Chem. Eng. Data 62, 1628–1638 (2017)

    CAS  Google Scholar 

  38. Hiraga, Y., Koyama, K., Sato, Y., Smith, R.L.: High pressure densities for mixed ionic liquids having different functionalities: 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 108, 7–17 (2017)

    CAS  Google Scholar 

  39. Abdulagatov, I.M., Tekin, A., Safarov, J., Shahverdiyev, A., Hassel, E.: High-pressure densities and derived volumetric properties (excess, apparent and partial molar volumes) of binary mixtures of methanol + [Bmim][PF6]. J. Solution Chem. 37, 801–833 (2008)

    CAS  Google Scholar 

  40. Ayranci, E., Sahin, E.M.: Interactions of imidazolium dased ionic liquids with water studied by density and speed of sound measurements: effect of the chain length of an alkyl substituent on the imidazolium ion. J. Solution Chem. 47, 246–261 (2018)

    CAS  Google Scholar 

  41. Bahadur, I., Deenadayalu, N.: Apparent molar volume and isentropic compressibility for the binary systems {methyltrioctylammonium bis(trifluoromethylsulfonyl)imide + methyl acetate or methanol} and (methanol + methyl acetate) at T = 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure. J. Solution Chem. 40, 1528–1543 (2011)

    CAS  Google Scholar 

  42. Verdía, P., Hernaiz, M., González, E.J., Macedo, E.A., Salgado, J., Tojo, E.: Effect of the number, position and length of alkyl chains on the physical properties of polysubstituted pyridinium ionic liquids. J. Chem. Thermodyn. 69, 19–26 (2014)

    Google Scholar 

  43. Hou, H., Jiao, B., Li, Q., Lin, X., Liu, S.: Physicochemical properties, 1H-NMR, ab initio calculations and molecular interaction in binary mixtures of N-methylimidazole with methanol. J. Solution Chem. 47, 1875–1901 (2018)

    CAS  Google Scholar 

  44. Katti, P.K., Chaudhri, M.M.: Viscosities of binary mixtures of benzyl acetate with dioxane, aniline and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964)

    CAS  Google Scholar 

  45. Prasad, G., Muralidhar Reddy, K., Padamasuvarna, R., Madhu Mohan, T., Vijaya Krishna, T., Ramesh Kumar, V.: Thermophysical properties of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide with 2-ethoxyethanol from T = (298.15 to 323.15) K at atmospheric pressure. J. Mol. Liquids 251, 335–344 (2018)

    CAS  Google Scholar 

  46. González, E.J., González, B., Macedo, E.A.: Thermophysical properties of the pure ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide and its binary mixtures with alcohols. J. Chem. Eng. Data 58, 1440–1448 (2013)

    Google Scholar 

  47. Shafaati, S., Almasi, M.: Influence of temperature and carbon chain on thermophysical properties of benzaldehyde/alkan-2-ol binary mixtures. J. Chem. Eng. Data 62, 2406–2412 (2017)

    CAS  Google Scholar 

  48. Chen, Y., Sun, Y., Li, Z., Wang, R., Hou, A., Yang, F.: Volumetric properties of binary mixtures of ionic liquid with tributyl phosphate and dimethyl carbonate. J. Chem. Thermody. 123, 165–173 (2018)

    CAS  Google Scholar 

  49. Prasad, G., Reddy, K.M., Padamasuvarna, R., Mohan, T.M., Krishna, T.V., Rao, S.G.: Investigations of molecular interactions in the binary mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) amide and 2-propoxyethanol from T = (298.15 to 323.15) K at atmospheric pressure. J. Solution Chem. 47, 1980–2006 (2018)

    CAS  Google Scholar 

  50. Kermanpour, F., Rabie, M.M., Broumand, S.: A thermodynamic and physical study on (1-hexyl-3-methylimidazolium chloride + 1-pentanol and ethylene glycol) binary mixtures at temperatures (293.15–333.15) K. J. Solution Chem. 46, 2091–2108 (2017)

    CAS  Google Scholar 

  51. Carmen Grande, M.d., Juliá, J.A., García, M., Marschoff, C.M.: On the density and viscosity of (water+dimethylsulphoxide) binary mixtures. J. Chem. Thermodyn. 39, 1049–1056 (2007)

    Google Scholar 

  52. Santos, Â.F.S., Moita, M.-L.C.J., Nobre, L.C.S., Lampreia, I.M.S.: A volumetric and acoustic study of pseudo-binary mixtures of (water + 1,3-propanediol + 3-butoxypropan-1-amine) from T = (283.15 to 303.15) K. J. Chem. Thermodyn. 128, 344–351 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the National Natural Scientific Fund of China (No. 21978291, 21776289, 21878292, 21606240) and K. C. Wong Education Foundation. Sincerely appreciate Prof. Suojiang Zhang (IPE, CAS) for his careful academic guidance and great support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhou or Xingmei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Yang, S., Wang, X. et al. Densities and Viscosities of Binary Mixtures Containing the Polyhydric Protic Ionic Liquid(2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium methanesulfonate) and Water or Alcohols. J Solution Chem 49, 423–457 (2020). https://doi.org/10.1007/s10953-020-00968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00968-2

Keywords

Navigation