Skip to main content
Log in

Isobaric Vapor–Liquid Equilibrium for Binary System of 2-Methylpyridine + 2-Vinylpyridine at (1.9, 4.0 and 5.3) kPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Isobaric vapor–liquid equilibrium (VLE) data for 2-methylpyridine + 2-vinylpyridine binary systems have been measured using a dynamic circulation device with the pressure points 1.9 kPa, 4.0 kPa, and 5.3 kPa at temperature in the range from 302.8 to 348.5 K. The VLE data passed the thermodynamic consistency test by using L–W method, R–K method and Fredenslund method. The NRTL, Wilson and UNIQUAC models were used to fit the data and binary interaction parameters were obtained for the three models. For these models, the results showed that the calculated values of the model were in good agreement with the experimental values and could, thereby, be used for the design and optimization of distillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, C., Long, Z.H., Zhu, Z.N.: Progress in the synthesis technology of buphenyl latex. Chem. Reac. Eng. Technol. 17, 272–277 (1995). https://doi.org/10.3969/j.issn.1001-7631.2001.03.01

    Article  Google Scholar 

  2. Zhang, W., Zhang, Y.M., Li, S.H.: Tunable nanosupramolecular aggregates mediated by host–guest complexation. Angew. Chem. 128, 11624–11628 (2016). https://doi.org/10.1002/ange.201605420

    Article  Google Scholar 

  3. Luo, J.X., Li, M.C., Xie, M.H.: Benzoyl peroxide/2-vinylpyridine synergy in RAFT polymerization: synthesis of poly(2-vinylpyridine) with low dispersity at ambient temperature. Macromol. Macromol. Chem. Phys. 216, 1646–1652 (2015). https://doi.org/10.1002/macp.201500156

    Article  CAS  Google Scholar 

  4. Bonnemann, H., Samon, M.: Process for the preparation of 2-vinylpyridine from acetylene and acrylonitrile and 2-vinylpyridine prepared by this process; organo-cobalt compounds [p]. US4267329A, 1980

  5. Xu, J.G., Xie, J.W., Shao, L.L.: Synthesis method of 2-vinyl pyridine. Tianjin Chem. Ind. 6, 33–35 (2015). https://doi.org/10.3969/j.issn.1008-1267.2004.06.013

    Article  Google Scholar 

  6. Hadjichristidis, N., Iatrou, H., Pispas, S.: Anionic polymerization: high vacuum techniques. J. Polym. Sci. A 38, 3211–3234 (2000)

    Article  CAS  Google Scholar 

  7. Bengough, W.I., Henderson, W.: The kinetics of the polymerization of 2-vinyl pyridine. Trans. Faraday Soc. 61, 141 (1965). https://doi.org/10.1039/TF9656100141

    Article  CAS  Google Scholar 

  8. Hickman, K.C.D., Embree, N.D.: Decomposition hazard of vacuum stills. Ind. Eng. Chem. 40(1), 135–138 (1948)

    Article  CAS  Google Scholar 

  9. Hickman, K.C.D.: High vacuum distillation. Ind. Eng. Chem. 40(1), 16–18 (1948)

    Article  CAS  Google Scholar 

  10. King, R.W.: Distillation of heat sensitive materials, part 1. Br. Chem. Eng. 12(4), 568–572 (1967)

    CAS  Google Scholar 

  11. Wakatsuki, Y., Yamazaki, H.: Cobaltocene catalyzed synthesis of pyridines. Synthesis 1976(1), 26–28 (1976)

  12. Chalari, I., Pispas, S., Hadjichristidis, N.: Controlled free-radical polymerization of 2-vinylpyridine in the presence of nitroxides. J. Polym. Sci. A 37, 2889–2895 (2001). https://doi.org/10.1002/pola.1268

    Article  Google Scholar 

  13. Lencka, M.: Measurements of the vapour pressures of pyridine, 2-methylpyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, and 2,4,6-trimethylpyridine from 0.1 kPa to atmospheric pressure using a modified Swietoslawski ebulliometer. J. Chem. Thermodyn. 22, 473–480 (1990). https://doi.org/10.1016/0021-9614(90)90139-H

    Article  CAS  Google Scholar 

  14. Chirico, R.D., Knipmeyer, S.E., Nguyen, A.: Thermodynamic properties of the methylpyridines. Part 2. Vapor pressures, heat capacities, critical properties, derived thermodynamic functions between the temperatures 250 K and 560 K, and equilibrium isomer distributions for all temperatures ≥ 250 K. J. Chem. Thermodyn. 31, 339–378 (1999). https://doi.org/10.1006/jcht.1998.0451

    Article  CAS  Google Scholar 

  15. Yang, Y., Fan, K.G., Bai, P.: Isobaric vapor−liquid equilibrium data for the binary system of water + 2-methylpyridine at 101.3, 60.0, and 20.0 kPa. J. Chem. Eng. Data 62, 684–690 (2017). https://doi.org/10.1021/acs.jced.6b00713

    Article  CAS  Google Scholar 

  16. Balandin, A.A., Klabunovskii, E.I., Oberemok-Yakubova, A.P.: Thermochemical determination of the heats of combustion of 2-ethyl-and 2-vinylpyridines. Russ. Chem. Bull. 9, 735–737 (1960). https://doi.org/10.1007/BF01179166

    Article  Google Scholar 

  17. Wisniak, J.: A new test for the thermodynamic consistency of vapor–liquid equilibrium. Ind. Eng. Chem. Res. 32, 1531–1533 (1993). https://doi.org/10.1021/ie00019a030

    Article  CAS  Google Scholar 

  18. Wisniak, J., Ortega, J., Fernández, L.: A fresh look at the thermodynamic consistency of vapour–liquid equilibria data. J. Chem. Thermodyn. 105, 385–395 (2017). https://doi.org/10.1016/j.jct.2016.10.038

    Article  CAS  Google Scholar 

  19. Chen, H.L., Zhang, L., Huang, Y.L.: Isobaric vapour–liquid equilibrium of three binary systems containing dimethyl succinate, dimethyl glutarate and dimethyl adipate at 2, 5.2 and 8.3 kPa. J. Chem. Thermodyn. 133, 100–110 (2019). https://doi.org/10.1016/j.jct.2019.02.006

    Article  CAS  Google Scholar 

  20. Guo, C.H., Tang, Y., Wan, J.R.: Isobaric vapour–liquid equilibrium for binary system of cyclohexanol + cyclohexylbenzene at (5, 10, 15, 20 and 25) kPa. J. Chem. Thermodyn. 144, 106086 (2020). https://doi.org/10.1016/j.jct.2020.106086

    Article  CAS  Google Scholar 

  21. Zhi, C.L., Tang, Y., Wan, J.R.: Determination and correlation of ternary isobaric vapour–liquid equilibrium data of (dimethyl succinate + dimethyl glutarate + dimethyl adipate) at 2, 5 and 8 kPa. J. Chem. Thermodyn. 143, 106047 (2020). https://doi.org/10.1016/j.jct.2019.106047

    Article  CAS  Google Scholar 

  22. Niu, F.F., Liu, Y.M., Wang, X.N.: Separation of methylcyclopentane, cyclohexane and methylcyclohexane mixture by atmospheric distillation. J. Chem. Thermodyn. (2021). https://doi.org/10.1016/j.jct.2021.106535

    Article  Google Scholar 

  23. Wang, X.Q., Zhuang, X.L., Jiang, D.G.: Measurement and correlation of vapour–liquid equilibrium of the 1,2-epoxycyclohexane-cyclohexanone binary system at 101.3 kPa. Chin. J. Chem. Eng. 22, 355–359 (2014). https://doi.org/10.1016/S1004-9541(14)60042-2

    Article  CAS  Google Scholar 

  24. Ke, W.J., Ding, H., Gao, Y.J.: Isobaric vapour–liquid equilibrium for binary system of methyl caprylate+methyl caprate at 2, 6 and 10kPa. J. Chem. Thermodyn. 106, 145–152 (2017). https://doi.org/10.1016/j.jct.2016.11.024

    Article  CAS  Google Scholar 

  25. Wang, X., Zhuang, X., Yun, S.: Measurement and correlation of vapour–liquid equilibrium for a cyclohexene-cyclohexanol binary system at 101.3 kPa. Chin. J. Chem. Eng. 19, 484–488 (2011). https://doi.org/10.1016/S1004-9541(11)60010-4

    Article  CAS  Google Scholar 

  26. Pan, J.H., Li, X.J., Zhang, W.J.: Isobaric vapour–liquid equilibrium for binary systems of ethyl iodide with ethanol, propionic acid and ethyl propionate at 101.3 kPa. J. Chem. Thermodyn. 132, 23–28 (2019). https://doi.org/10.1016/j.jct.2018.12.023

    Article  CAS  Google Scholar 

  27. Aspen Plus Software: Version 11.0. Aspen Technology, Inc., Burlington, M. A. (2010)

  28. Aspentech: Aspen physical property system: physical property methods and models 11.0, Burlington, M. A. (2010)

  29. Wilson, G.M.: Vapour-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964). https://doi.org/10.1021/ja01056a002

    Article  CAS  Google Scholar 

  30. Rubio, R.G., Prolongo, M.G., Pena, M.D.: Local compositions in thermodynamic excess functions for liquid mixtures. J. Phys. Chem. 14, 135–144 (1968). https://doi.org/10.1021/j100289a031

    Article  Google Scholar 

  31. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968). https://doi.org/10.1002/aic.690140124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn) for the expert linguistic services provided.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by QG, JL, PY, YJ, BZ and LZ. The first draft of the manuscript was written by QG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization: QG, PY, LZ; Methodology: JL, YJ, BZ, LZ; Formal analysis and investigation: QG, PY; Writing—original draft preparation: QG; Writing—review and editing: QG, JL, PY, YJ, BZ and LZ; Funding acquisition: XW; Resources: XW; Supervision: XW.

Corresponding author

Correspondence to Xunqiu Wang.

Ethics declarations

Competing Interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Lin, J., Yang, P. et al. Isobaric Vapor–Liquid Equilibrium for Binary System of 2-Methylpyridine + 2-Vinylpyridine at (1.9, 4.0 and 5.3) kPa. J Solution Chem 52, 921–939 (2023). https://doi.org/10.1007/s10953-023-01280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01280-5

Keywords

Navigation