Skip to main content
Log in

Isobaric Binary and Ternary Vapor–Liquid Equilibrium for the Mixture of n-Hexane, Methylcyclopentane and N-Methylpyrrolidone

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The vapor–liquid phase equilibrium (VLE) data for binary systems of: n-hexane + methylcyclopentane, n-hexane + N-methylpyrrolidone (NMP), methylcyclopentane + NMP and ternary system of n-hexane + methylcyclopentane + NMP were determined with a modified Rose still at atmospheric pressure (101.3 kPa), and all the binary data passed the Wisniak area test and Van Ness point test, which accorded with the thermodynamic consistency. Three thermodynamic models Wilson, NRTL and UNIQUAC were used to correlate binary data and get binary interaction parameters, then the built-in parameters of the Aspen Plus software were replaced by the obtained model parameters to estimate the ternary data of n-hexane + methylcyclopentane + NMP. The estimation values of the three models are in good agreement with the experimental data. Moreover, the effect of NMP was analyzed, and it found to be an effective candidate extractant for the extractive distillation of n-hexane + methylcyclopentane.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schaumburg, H.H., Spencer, P.S.: Degeneration in central and peripheral nervous systems produced by pure n-hexane: an experimental study. Brain 99, 183–192 (1976)

    Article  CAS  PubMed  Google Scholar 

  2. Meher, L.C., Dharmagadda, V.S.S., Naik, S.N.: Optimization of alkali-catalyzed transesterification of Pongamia Pinnata oil for production of biodiesel. Bioresour. Technol. 97, 1392–1397 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Sayyar, S., Abidin, Z.Z., Yunus, R.: Extraction of Oil from Jatropha seeds-optimization and kinetics. Am. J. Appl. Sci. 6, 1390–1395 (2009)

    Article  Google Scholar 

  4. Yan, X.W.: Purification process of industrialization preparation of pesticide residue grade n-hexane. Beijing University of Chemical Technology (2012)

  5. Wang, L.H.: evaluation of edible vegetable oil leaching solvent and solvent residue detection method. Suzhou University (2013)

  6. Cheng, N.L.: Solvent Handbook, 4th edn. Chemical Industry Press, Beijing (2010)

    Google Scholar 

  7. Lin, J., Gu, Z.G., Si, L.: Simulation calculation and small test of extractive distillation separation of n-hexane methylcyclopentane. Chem. Ind. Eng. 17, 103–105 (2000)

    Google Scholar 

  8. Shan, X.J., Gao, S., Wei, S.H.: Separation of n-hexane from 6# solvent oil. Gansu Petrol. Chem. Ind. 3, 25–31 (2010)

    Google Scholar 

  9. Zhao, Y.J., Cheng, Y.: Preparation of high purity n-hexane. Chem. Reagents 21, 54–55 (1999)

    CAS  Google Scholar 

  10. Jia, P.F., Tang, H.D., Liang, D.Q.: Production process of high purity n-hexane. Tianjin Chem. Ind. 30, 44–45 (2016)

    Google Scholar 

  11. Lei, Z.G., Li, C.Y., Chen, B.H.: Extractive distillation: a review. Sep. Purif. Rev. 32, 121–213 (2003)

    Article  CAS  Google Scholar 

  12. Zhang, Y., Xu, X., Yang, H.: Separation of azeotropic mixture isopropyl alcohol + ethyl acetate by extractive distillation: vapor–liquid equilibrium measurements and interaction exploration. Fluid Phase Equilib. 507, 112428 (2020)

    Article  CAS  Google Scholar 

  13. Li, R., Meng, X.L., Liu, X.W.: Separation of azeotropic mixture (2, 2, 3, 3-tetrafluoro-1-propanol + water) by extractive distillation: entrainers selection and vapor–liquid equilibrium measurements. J. Chem. Thermodyn. 138, 205–210 (2019)

    Article  CAS  Google Scholar 

  14. Chen, Y.P., Liang, Z.S., Xu, W.: Simulation of 1, 3-butadiene separation in C4 distillate by N-methylpyrrolidone extractive distillation. Petrochem. Ind. 37, 48–52 (2008)

    Google Scholar 

  15. Lei, Z.G., Zhou, R.Q.: Separation of C4 by extractive distillation with salt-added DMF. Chem. J. China 3, 407–410 (1999)

    Google Scholar 

  16. Liao, L.H.: Separation of cracked carbon five fractions by extractive distillation with salt NMP method. Petrochem. Ind. 39, 167–172 (2010)

    CAS  Google Scholar 

  17. Li, M.: Phase behavior and process optimization of DMF and NMP extractive distillation for the separation of C6 hydrocarbon azeotropes. Qingdao University of Science and Technology (2018)

  18. Chao, H.: Computer-aided ionic liquid design and process optimization of alkane-cycloalkane extractive distillation separation. East China University of Science and Technology (2018)

  19. Lin, J., Gu, Z.G., Si, L.: Study on NMP-ethylene glycol mixed solvent for extractive distillation. J. Nanjing Norm. Univ. 3, 19–21 (2003)

    Google Scholar 

  20. Li, C.L., Jin, H.X., Lu, J.H.: Determination of vapor–liquid equilibrium of three-components system of n-hexane–methylcyclopentane–N-methylpyrrolidone and simulation of extractive distillation. Petrochem. Ind. 40, 959–962 (2011)

    CAS  Google Scholar 

  21. Sun, Y.H., Fu, D.L., Ma, S.T.: Isobaric vapor–liquid equilibrium data for two binary systems n-hexane + 1,2-dimethoxyethane and methylcyclopentane + 1, 2-dimethoxyethane at 101.3 kPa. J. Chem. Eng. Data 63, 395–401 (2019)

    Article  CAS  Google Scholar 

  22. Wang, B.Y., Sun, Y.H.: Vapor–liquid equilibrium of n-hexane + isobutyl acetate, n-hexane + sec-butyl acetate and methylcyclopentane + isobutyl acetate system. Liaoning Chem. Ind. 47, 146–149 (2018)

    CAS  Google Scholar 

  23. Myers, H.S.: Equilibrium for naphthenes and paraffins. Pet. Refin. 36(3), 175–178 (1957)

    CAS  Google Scholar 

  24. Ehrett, W.E., Weber, J.H.: Vapor–liquid equilibria at atmospheric and subatmospheric pressures for system n-hexane-methylcxyclopentane. J. Chem. Eng. Data 4, 142 (1959)

    Article  CAS  Google Scholar 

  25. Fischer, K., Gmehling, J.: Vapor–liquid equilibria, activity coefficients at infinite dilution and heats of mixing for mixtures of N-methyl pyrrolidone-2 with C5 or C6 hydrocarbons and for hydrocarbon mixtures. Fluid Phase Equilib. 119, 113–130 (1996)

    Article  CAS  Google Scholar 

  26. Gierycz, P., Rogalski, M., Malanowski, S.: Vapor–liquid equilibria in binary system formed by N-methylpyrrolidone with hydrocarbons and hydroxyl derivatives vapor-liquid equilibria in binary systems formed by N-Methylpyrrolidone with hydrocarbons and hydroxyl derivatives. Fluid Phase Equilib. 22, 107–122 (1985)

    Article  CAS  Google Scholar 

  27. Dojcansky, J., Revus, M., Surovy, J., Marecek, V.: Influence of N-methylpyrrolidinone on relative volatility hexane and benzene. Ropa Uhlie 22, 236–243 (1980)

    Google Scholar 

  28. Blanco, B., Beltran, S., Cabezas, J.L., Coca, J.: Phase equilibria of binary systems formed by hydrocarbons from petroleum fractions and the solvents N-Methylpyrrolidone and N,N-Dimethylformamide. J. Chem. Eng. Data 42(5), 938–942 (1997)

    Article  CAS  Google Scholar 

  29. Li, C.L., Jin, H.X., Lv, J.H., Li, Y.J., Sun, Y.J.: Determination of vapor–liquid equilibrium of three components of n-hexane-methylcyclopentane-NMP and simulation of extractive distillation. Petrochem. Ind. 40(09), 959–962 (2011)

    CAS  Google Scholar 

  30. Chang, W.X., Xu, X.R., Li, X.L.: Isobaric vapor–liquid equilibrium of water—acetic acid—pentyl acetate system. J. Chem. Eng. 56(08), 6–11 (2005)

    Google Scholar 

  31. Li, X.L., Chang, W.X., Wan, H.: Vapor–liquid equilibrium study of isopropyl acetate–acetic acid–water system. J. Chem. Eng. Coll. Univ. 20(1), 7–11 (2006)

    Google Scholar 

  32. Wang, M., Feng, L.P.: Simulation and optimization of water acetate mixture separation by extraction distillation. J. Huaiyin Inst. Technol. 28(1), 9–14 (2019)

    Google Scholar 

  33. Prausnitz, J.M.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  34. Jaime, W., Juan, O., Luis, F.: A fresh look at the thermodynamic consistency of vapor–liquid equilibria data. J. Chem. Thermodyn. 105, 385–395 (2017)

    Article  CAS  Google Scholar 

  35. Jaime, W.: a new test for the thermodynamic consistency of vapor–liquid equilibrium. Ind. Eng. Chem. Res. 32, 1531–1533 (1993)

    Article  Google Scholar 

  36. Van Ness, H.C.: Thermodynamics in the treatment of (vapor + liquid) equilibria. J. Chem. Thermodyn. 27, 113–134 (1995)

    Article  Google Scholar 

  37. Fredenslund, A., Gmehling, J., Rasmussen, P.: A Group Contribution Method. In: Vapor-Liquid Equilibria Using UNIFAC. Elsevier, Amsterdam (1977)

    Google Scholar 

  38. Wisniak, J., Apelblat, A., Segura, H.: An assessment of thermodynamic consistency tests for vapor–liquid equilibrium data. Phys. Chem. Liq. 35, 1–58 (1997)

    Article  CAS  Google Scholar 

  39. Durbin, J., Watson, J.G.S.: Testing for serial correlation in least squares regresssion. Biometrika 38, 159–177 (1951)

    Article  CAS  PubMed  Google Scholar 

  40. Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)

    Article  CAS  Google Scholar 

  41. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  42. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  43. Liu, K., Zhang, T., Ma, Y.X.: Vapor–liquid equilibrium measurements and correlation for separating azeotropic mixture (ethyl acetate + n-heptane) by extractive distillation. J. Chem. Thermodyn. 144, 106075 (2020)

    Article  CAS  Google Scholar 

  44. Ma, Y.X., Gao, J., Li, M.: Isobaric vapor–liquid equilibrium measurements and extractive distillation process for the azeotrope of (N,N-dimethylisopropylamine + acetone). J. Chem. Thermodyn. 122, 154–161 (2018)

    Article  CAS  Google Scholar 

  45. Shi, P.Y., Gao, Y.C., Wu, J.Y.: Separation of azeotrope (2,2,3,3-tetrafluoro-1-propanol + water): isobaric vapor–liquid phase equilibrium measurements and azeotropic distillation. J. Chem. Thermodyn. 118, 139–146 (2018)

    Article  CAS  Google Scholar 

  46. Zhang, Y., Wang, Z.J., Xu, X.: Entrainers selection and vapor–liquid equilibrium measurements for separating azeotropic mixtures (ethanol + n-hexane/cyclohexane) by extractive distillation. J. Chem. Thermodyn. 144, 106070 (2020)

    Article  CAS  Google Scholar 

  47. Mathias, P.M.: Guidelines for the analysis of vapor−liquid equilibrium data. J. Chem. Eng. Data 62, 2231–2233 (2017)

    Article  CAS  Google Scholar 

  48. Mathias, P.M.: Effect of VLE uncertainties on the design of separation sequences by distillation−study of the benzene−chloroform−acetone system. Fluid Phase Equilib. 408, 265–272 (2016)

    Article  CAS  Google Scholar 

  49. Wang, K.L., Li, J., Li, L., Miu, Y.J., Ye, K.: Application of aspen plus in regression analysis of vapor–liquid phase equilibrium data in chemical thermodynamic. Shandong Chem. Ind. 49(18), 200–202 (2020)

    Google Scholar 

  50. Sandler, S.I.: Using Aspen Plus in Thermodynamics Instruction: A Step-By-Step Guide. Wiley, Hoboken (2015)

    Google Scholar 

  51. Toshihiko, H., Kazuteru, T.: Isobaric vapor–liquid equilibria for binary and ternary systems composed of 2-methoxy-2-methylpropane, ethanol, 2-methyl-2-propanol, and octane at 101.3 kPa. J. Chem. Eng. Data 45, 564–569 (2000)

    Article  CAS  Google Scholar 

  52. Sanchez-Russinyol, M.D.C., Aucejo, A., Loras, S.: Isobaric vapor–liquid equilibria for binary and ternary mixtures of ethanol, methylcyclohexane, and p-xylene. J. Chem. Eng. Data 49, 1258–1262 (2004)

    Article  CAS  Google Scholar 

  53. Daming, G., Dechun, Z., Linyun, Z., Hangmin, G., Hong, S., Hong, C., Jingyu, S.: Isobaric vapor–liquid equilibria for binary and ternary mixtures of propanal, propanol, and propanoic acid. J. Chem. Eng. Data 55, 5887–5895 (2010)

    Article  CAS  Google Scholar 

  54. Kuus, M., Kirss, H., Siimer, E., Kudryavtseva, L.: Thermodynamics of ternary liquid mixtures containing toluene, ethylbenzene, and chlorobenzene. J. Chem. Eng. Data 48, 898–903 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Social Development Program of Taizhou (201710)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingmin Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yu, Y., Zhang, L. et al. Isobaric Binary and Ternary Vapor–Liquid Equilibrium for the Mixture of n-Hexane, Methylcyclopentane and N-Methylpyrrolidone. J Solution Chem 50, 1258–1284 (2021). https://doi.org/10.1007/s10953-021-01116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01116-0

Keywords

Navigation